Badge
🚨Update🚨: As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks, or features, or update support to new libraries.
jiant is an NLP toolkitThe multitask and transfer learning toolkit for natural language processing research
Why should I use jiant?
jiant supports multitask learningjiant supports transfer learningjiant supports 50+ natural language understanding tasksjiant supports the following benchmarks:
jiant is a research library and users are encouraged to extend, change, and contribute to match their needs!A few additional things you might want to know about jiant:
jiant is configuration file drivenjiant is built with PyTorchjiant integrates with datasets to manage task datajiant integrates with transformers to manage models and tokenizers.jiant by reading our GuidesTo import jiant from source (recommended for researchers):
git clone https://github.com/nyu-mll/jiant.git
cd jiant
pip install -r requirements.txt
# Add the following to your .bash_rc or .bash_profile
export PYTHONPATH=/path/to/jiant:$PYTHONPATH
If you plan to contribute to jiant, install additional dependencies with pip install -r requirements-dev.txt.
To install jiant from source (alternative for researchers):
git clone https://github.com/nyu-mll/jiant.git
cd jiant
pip install . -e
To install jiant from pip (recommended if you just want to train/use a model):
pip install jiant
We recommended that you install jiant in a virtual environment or a conda environment.
To check jiant was correctly installed, run a simple example.
The following example fine-tunes a RoBERTa model on the MRPC dataset.
Python version:
from jiant.proj.simple import runscript as run
import jiant.scripts.download_data.runscript as downloader
EXP_DIR = "/path/to/exp"
# Download the Data
downloader.download_data(["mrpc"], f"{EXP_DIR}/tasks")
# Set up the arguments for the Simple API
args = run.RunConfiguration(
run_name="simple",
exp_dir=EXP_DIR,
data_dir=f"{EXP_DIR}/tasks",
hf_pretrained_model_name_or_path="roberta-base",
tasks="mrpc",
train_batch_size=16,
num_train_epochs=3
)
# Run!
run.run_simple(args)
Bash version:
EXP_DIR=/path/to/exp
python jiant/scripts/download_data/runscript.py \
download \
--tasks mrpc \
--output_path ${EXP_DIR}/tasks
python jiant/proj/simple/runscript.py \
run \
--run_name simple \
--exp_dir ${EXP_DIR}/ \
--data_dir ${EXP_DIR}/tasks \
--hf_pretrained_model_name_or_path roberta-base \
--tasks mrpc \
--train_batch_size 16 \
--num_train_epochs 3
Examples of more complex training workflows are found here.
The jiant project's contributing guidelines can be found here.
jiant v1.3.2?jiant v1.3.2 has been moved to jiant-v1-legacy to support ongoing research with the library. jiant v2.x.x is more modular and scalable than jiant v1.3.2 and has been designed to reflect the needs of the current NLP research community. We strongly recommended any new projects use jiant v2.x.x.
jiant 1.x has been used in in several papers. For instructions on how to reproduce papers by jiant authors that refer readers to this site for documentation (including Tenney et al., Wang et al., Bowman et al., Kim et al., Warstadt et al.), refer to the jiant-v1-legacy README.
If you use jiant ≥ v2.0.0 in academic work, please cite it directly:
@misc{phang2020jiant,
author = {Jason Phang and Phil Yeres and Jesse Swanson and Haokun Liu and Ian F. Tenney and Phu Mon Htut and Clara Vania and Alex Wang and Samuel R. Bowman},
title = {\texttt{jiant} 2.0: A software toolkit for research on general-purpose text understanding models},
howpublished = {\url{http://jiant.info/}},
year = {2020}
}
If you use jiant ≤ v1.3.2 in academic work, please use the citation found here.
jiant is released under the MIT License.
Tags
Information
Organization
BenchFlow
Release Date
April 18, 2025