/
OS-World1503eb3
"""Script to run end-to-end evaluation on the benchmark.
Utils and basic architecture credit to https://github.com/web-arena-x/webarena/blob/main/run.py.
"""
import argparse
import datetime
import json
import logging
import os
import sys
from typing import List, Dict
import math
from tqdm import tqdm
from multiprocessing import Process, Manager
import lib_run_single
from desktop_env.desktop_env import DesktopEnv
from mm_agents.aguvis_agent import AguvisAgent
# import wandb
# Logger Configs {{{ #
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(
os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8"
)
debug_handler = logging.FileHandler(
os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8"
)
stdout_handler = logging.StreamHandler(sys.stdout)
sdebug_handler = logging.FileHandler(
os.path.join("logs", "sdebug-{:}.log".format(datetime_str)), encoding="utf-8"
)
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(logging.INFO)
sdebug_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s"
)
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
sdebug_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("desktopenv"))
sdebug_handler.addFilter(logging.Filter("desktopenv"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
logger.addHandler(sdebug_handler)
# }}} Logger Configs #
logger = logging.getLogger("desktopenv.experiment")
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
# environment config
parser.add_argument("--path_to_vm", type=str, default=None)
parser.add_argument(
"--headless", action="store_true", help="Run in headless machine"
)
parser.add_argument(
"--action_space", type=str, default="pyautogui", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"],
default="screenshot",
help="Observation type",
)
parser.add_argument("--screen_width", type=int, default=1920)
parser.add_argument("--screen_height", type=int, default=1080)
parser.add_argument("--sleep_after_execution", type=float, default=2.0)
parser.add_argument("--max_steps", type=int, default=15)
# agent config
parser.add_argument(
"--test_config_base_dir", type=str, default="evaluation_examples"
)
# lm config
parser.add_argument("--planner_model", type=str, default=None)
parser.add_argument("--executor_model", type=str, default="aguvis-72b-415")
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--max_tokens", type=int, default=1500)
parser.add_argument("--stop_token", type=str, default=None)
# example config
parser.add_argument("--domain", type=str, default="all")
parser.add_argument(
"--test_all_meta_path", type=str, default="evaluation_examples/test_all.json"
)
# logging related
parser.add_argument("--result_dir", type=str, default="./results")
parser.add_argument("--num_envs", type=int, default=1, help="Number of environments to run in parallel")
args = parser.parse_args()
return args
def distribute_tasks(test_all_meta: dict, num_envs: int) -> List[Dict]:
"""Distribute tasks evenly across environments."""
# Flatten the tasks into a single list
all_tasks = []
for domain, examples in test_all_meta.items():
for example_id in examples:
all_tasks.append((domain, example_id))
# Calculate tasks per environment
tasks_per_env = math.ceil(len(all_tasks) / num_envs)
# Distribute tasks
distributed_tasks = []
for i in range(num_envs):
env_tasks = {}
start_idx = i * tasks_per_env
end_idx = min((i + 1) * tasks_per_env, len(all_tasks))
for domain, example_id in all_tasks[start_idx:end_idx]:
if domain not in env_tasks:
env_tasks[domain] = []
env_tasks[domain].append(example_id)
distributed_tasks.append(env_tasks)
return distributed_tasks
def run_env_tasks(env_idx: int, env: DesktopEnv, agent: AguvisAgent, env_tasks: dict, args: argparse.Namespace, shared_scores: list):
"""Run tasks for a single environment."""
logger.info(f"Executing tasks in environment {env_idx + 1}/{args.num_envs}")
for domain in tqdm(env_tasks, desc=f"Env{env_idx+1}-Domain"):
for example_id in tqdm(env_tasks[domain], desc="Example", leave=False):
config_file = os.path.join(
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
)
with open(config_file, "r", encoding="utf-8") as f:
example = json.load(f)
logger.info(f"[Env {env_idx+1}][Domain]: {domain}")
logger.info(f"[Env {env_idx+1}][Example ID]: {example_id}")
logger.info(f"[Env {env_idx+1}][Instruction]: {example['instruction']}")
example_result_dir = os.path.join(
args.result_dir,
args.action_space,
args.observation_type,
"planner-" + str(args.planner_model) + "-executor-" + str(args.executor_model),
domain,
example_id,
)
os.makedirs(example_result_dir, exist_ok=True)
try:
lib_run_single.run_single_example(
agent,
env,
example,
args.max_steps,
example["instruction"],
args,
example_result_dir,
shared_scores,
)
except Exception as e:
logger.error(f"Exception in Env{env_idx+1} {domain}/{example_id}: {e}")
env.controller.end_recording(
os.path.join(example_result_dir, "recording.mp4")
)
with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f:
f.write(
json.dumps(
{"Error": f"Time limit exceeded in {domain}/{example_id}"}
)
)
f.write("\n")
env.close()
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
logger.info("Args: %s", args)
distributed_tasks = distribute_tasks(test_all_meta, args.num_envs)
# First, set up all environments
logger.info("Setting up all environments...")
envs = []
agents = []
for env_idx in range(args.num_envs):
logger.info(f"Setting up environment {env_idx + 1}/{args.num_envs}")
agent = AguvisAgent(
planner_model=args.planner_model,
executor_model=args.executor_model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
action_space=args.action_space,
observation_type=args.observation_type,
)
agents.append(agent)
env = DesktopEnv(
path_to_vm=args.path_to_vm,
action_space=agent.action_space,
screen_size=(args.screen_width, args.screen_height),
headless=args.headless,
os_type="Ubuntu",
require_a11y_tree=args.observation_type
in ["a11y_tree", "screenshot_a11y_tree", "som"],
provider_name = "docker"
)
envs.append(env)
logger.info("All environments are ready. Starting parallel task execution...")
# Create a shared list for scores across processes
with Manager() as manager:
shared_scores = manager.list()
# Create and start processes for each environment
processes = []
for env_idx, (env, agent, env_tasks) in enumerate(zip(envs, agents, distributed_tasks)):
p = Process(
target=run_env_tasks,
args=(env_idx, env, agent, env_tasks, args, shared_scores)
)
processes.append(p)
p.start()
# Wait for all processes to complete
for p in processes:
p.join()
# Convert shared list to regular list
scores = list(shared_scores)
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")
def get_unfinished(
action_space, use_model, observation_type, result_dir, total_file_json
):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
return total_file_json
finished = {}
for domain in os.listdir(target_dir):
finished[domain] = []
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
if example_id == "onboard":
continue
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" not in os.listdir(example_path):
# empty all files under example_id
for file in os.listdir(example_path):
os.remove(os.path.join(example_path, file))
else:
finished[domain].append(example_id)
if not finished:
return total_file_json
for domain, examples in finished.items():
if domain in total_file_json:
total_file_json[domain] = [
x for x in total_file_json[domain] if x not in examples
]
return total_file_json
def get_result(action_space, use_model, observation_type, result_dir, total_file_json):
target_dir = os.path.join(result_dir, action_space, observation_type, use_model)
if not os.path.exists(target_dir):
print("New experiment, no result yet.")
return None
all_result = []
for domain in os.listdir(target_dir):
domain_path = os.path.join(target_dir, domain)
if os.path.isdir(domain_path):
for example_id in os.listdir(domain_path):
example_path = os.path.join(domain_path, example_id)
if os.path.isdir(example_path):
if "result.txt" in os.listdir(example_path):
# empty all files under example_id
try:
all_result.append(
float(
open(
os.path.join(example_path, "result.txt"), "r"
).read()
)
)
except:
all_result.append(0.0)
if not all_result:
print("New experiment, no result yet.")
return None
else:
print("Current Success Rate:", sum(all_result) / len(all_result) * 100, "%")
return all_result
if __name__ == "__main__":
####### The complete version of the list of examples #######
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = config()
with open(args.test_all_meta_path, "r", encoding="utf-8") as f:
test_all_meta = json.load(f)
if args.domain != "all":
test_all_meta = {args.domain: test_all_meta[args.domain]}
test_file_list = get_unfinished(
args.action_space,
"planner-" + str(args.planner_model) + "-executor-" + str(args.executor_model),
args.observation_type,
args.result_dir,
test_all_meta,
)
left_info = ""
for domain in test_file_list:
left_info += f"{domain}: {len(test_file_list[domain])}\n"
logger.info(f"Left tasks:\n{left_info}")
get_result(
args.action_space,
"planner-" + str(args.planner_model) + "-executor-" + str(args.executor_model),
args.observation_type,
args.result_dir,
test_all_meta,
)
test(args, test_file_list)