/
OS-World862d704
"""
OpenCUA Agent Implementation
This module implements an OpenCUA agent for desktop automation tasks, building upon
existing frameworks and integrating multiple coordinate mapping systems.
Framework and Implementation Sources:
- Main framework structure follows: https://github.com/xlang-ai/OSWorld/blob/main/mm_agents/agent.py
- Agent implementation adapted from: https://github.com/xlang-ai/OSWorld/blob/main/mm_agents/aguvis_agent.py
- Qwen2.5-VL coordinate mapping from: https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
"""
import re
import os
import ast
import time
import math
import httpx
import base64
import backoff
from loguru import logger
from typing import Dict, List, Tuple, Optional
# System prompts used in the training data
AGNET_SYS_PROMPT_L1 = "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"—\", maximize \"□\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}".strip()
# AGNET_SYS_PROMPT_L2 = "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nThought:\n - Step by Step Progress Assessment:\n - Analyze completed task parts and their contribution to the overall goal\n - Reflect on potential errors, unexpected results, or obstacles\n - If previous action was incorrect, predict a logical recovery step\n - Next Action Analysis:\n - List possible next actions based on current state\n - Evaluate options considering current state and previous actions\n - Propose most logical next action\n - Anticipate consequences of the proposed action\n - For Text Input Actions:\n - Note current cursor position\n - Consolidate repetitive actions (specify count for multiple keypresses)\n - Describe expected final text outcome\n - Use first-person perspective in reasoning\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"—\", maximize \"□\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}".strip()
AGNET_SYS_PROMPT_L3 = "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nObservation:\n - Describe the current computer state based on the full screenshot in detail. \n - Application Context:\n - The active application\n - The active window or page\n - Overall layout and visible interface\n - Key Elements:\n - Menu items and toolbars \n - Buttons and controls\n - Text fields and content\n - Dialog boxes or popups\n - Error messages or notifications\n - Loading states\n - Other key elements\n - Describe any content, elements, options, information or clues that are possibly relevant to achieving the task goal, including their name, content, or shape (if possible).\n\nThought:\n - Step by Step Progress Assessment:\n - Analyze completed task parts and their contribution to the overall goal\n - Reflect on potential errors, unexpected results, or obstacles\n - If previous action was incorrect, predict a logical recovery step\n - Next Action Analysis:\n - List possible next actions based on current state\n - Evaluate options considering current state and previous actions\n - Propose most logical next action\n - Anticipate consequences of the proposed action\n - For Text Input Actions:\n - Note current cursor position\n - Consolidate repetitive actions (specify count for multiple keypresses)\n - Describe expected final text outcome\n - Use first-person perspective in reasoning\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"—\", maximize \"□\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}\n".strip()
# Testing prompt on OSWorld-Verified
AGNET_SYS_PROMPT_L2 = """You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task. The password of the computer is "osworld-public-evaluation". If the task is not possible to do, output the action computer.terminate(status='failure').
For each step, provide your response in this format:
Thought:\n - Step by Step Progress Assessment:\n - Analyze completed task parts and their contribution to the overall goal\n - Reflect on potential errors, unexpected results, or obstacles\n - If previous action was incorrect, predict a logical recovery step\n - Next Action Analysis:\n - List possible next actions based on current state\n - Evaluate options considering current state and previous actions\n - Propose most logical next action\n - Anticipate consequences of the proposed action\n - For Text Input Actions:\n - Note current cursor position\n - Consolidate repetitive actions (specify count for multiple keypresses)\n - Describe expected final text outcome\n - Use first-person perspective in reasoning
Action:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize "—", maximize "□", close "X")\n - if the action involves keyboard actions like \'press\', \'write\', \'hotkey\':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions
Finally, output the action as PyAutoGUI code or the following functions:
- {"name": "computer.triple_click", "description": "Triple click on the screen", "parameters": {"type": "object", "properties": {"x": {"type": "number", "description": "The x coordinate of the triple click"}, "y": {"type": "number", "description": "The y coordinate of the triple click"}}, "required": ["x", "y"]}}
- {"name": "computer.terminate", "description": "Terminate the current task and report its completion status", "parameters": {"type": "object", "properties": {"status": {"type": "string", "enum": ["success", "failure"], "description": "The status of the task"}}, "required": ["status"]}}
""".strip()
STEP_TEMPLATE = "# Step {step_num}:\n"
INSTRUTION_TEMPLATE = "# Task Instruction:\n{instruction}\n\nPlease generate the next move according to the screenshot, task instruction and previous steps (if provided).\n"
ACTION_HISTORY_TEMPLATE = "## Action:\n{action}\n"
THOUGHT_HISTORY_TEMPLATE = "## Thought:\n{thought}\n\n## Action:\n{action}\n"
OBSERVATION_HISTORY_TEMPLATE = "## Observation:\n{observation}\n\n## Thought:\n{thought}\n\n## Action:\n{action}\n"
DETAIL_HISTORY_TEMPLATE = "## Thought:\n{thought}\n\n## Action:\n{action}\n\n## Code:\n{code}\n"
def encode_image(image_content):
"""Encode the image to base64"""
return base64.b64encode(image_content).decode('utf-8')
def parse_response_to_cot_and_action(input_string, screen_size, coordinate_type) -> Tuple[str, List[str], dict]:
"""Parse response including Observation, Thought, Action and code block"""
try:
sections = {}
obs_match = re.search(r'^##\s*Observation\s*:?[\n\r]+(.*?)(?=^##\s*Thought:|^##\s*Action:|^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if obs_match:
sections['observation'] = obs_match.group(1).strip()
thought_match = re.search(r'^##\s*Thought\s*:?[\n\r]+(.*?)(?=^##\s*Action:|^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if thought_match:
sections['thought'] = thought_match.group(1).strip()
action_match = re.search(r'^##\s*Action\s*:?[\n\r]+(.*?)(?=^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if action_match:
action = action_match.group(1).strip()
sections['action'] = action.strip()
if "computer.terminate" in input_string.lower():
# Look for code blocks that might contain terminate command
code_blocks = re.findall(r'```(?:code|python)?\s*(.*?)\s*```', input_string, re.DOTALL | re.IGNORECASE)
if code_blocks:
last_code = code_blocks[-1].strip().lower()
if "fail" in last_code:
sections['code'] = "FAIL"
return "FAIL", ["FAIL"], sections
elif "success" in last_code:
sections['code'] = "DONE"
return "DONE", ["DONE"], sections
# Default to DONE if terminate is mentioned but no specific status
sections['code'] = "DONE"
return "DONE", ["DONE"], sections
code_blocks = re.findall(r'```(?:python)\s*(.*?)\s*```', input_string, re.DOTALL)
if code_blocks:
code = code_blocks[-1].strip()
sections['original_code'] = transform_agnet_action_to_code_block(code)
corrected_code = correct_pyautogui_arguments(code)
sections['code'] = corrected_code
sections['code'] = project_coordinate_to_absolute_scale(corrected_code, screen_width=screen_size[0], screen_height=screen_size[1], coordinate_type=coordinate_type)
else:
# No code blocks found
sections['code'] = "WAIT"
return "WAIT", ["WAIT"], sections
if 'code' not in sections:
logger.error("Missing required action or code section")
return None, None, {}
if 'action' not in sections:
sections['action'] = ""
return sections['action'], [sections['code']], sections
except Exception as e:
logger.exception(f"Error parsing response: {str(e)}\nInput string: {input_string}")
return None, None, {}
def correct_pyautogui_arguments(code: str) -> str:
"""Correct the pyautogui arguments"""
function_corrections = {
'write': {
'incorrect_args': ['text', 'content'],
'correct_args': [],
'keyword_arg': 'message'
},
'press': {
'incorrect_args': ['key', 'button'],
'correct_args': [],
'keyword_arg': None
},
'hotkey': {
'incorrect_args': ['key1', 'key2', 'keys'],
'correct_args': [],
'keyword_arg': None
},
}
lines = code.strip().split('\n')
corrected_lines = []
for line in lines:
line = line.strip()
match = re.match(r'(pyautogui\.(\w+))\((.*)\)', line)
if match:
full_func_call = match.group(1)
func_name = match.group(2)
args_str = match.group(3)
if func_name in function_corrections:
func_info = function_corrections[func_name]
args = split_args(args_str)
corrected_args = []
for arg in args:
arg = arg.strip()
kwarg_match = re.match(r'(\w+)\s*=\s*(.*)', arg)
if kwarg_match:
arg_name = kwarg_match.group(1)
arg_value = kwarg_match.group(2)
if arg_name in func_info['incorrect_args']:
if func_info['keyword_arg']:
corrected_args.append(f"{func_info['keyword_arg']}={arg_value}")
else:
corrected_args.append(arg_value)
else:
corrected_args.append(f'{arg_name}={arg_value}')
else:
corrected_args.append(arg)
corrected_args_str = ', '.join(corrected_args)
corrected_line = f'{full_func_call}({corrected_args_str})'
corrected_lines.append(corrected_line)
else:
corrected_lines.append(line)
else:
corrected_lines.append(line)
corrected_code = '\n'.join(corrected_lines)
return corrected_code
def split_args(args_str: str) -> List[str]:
"""Split the arguments string into a list of arguments"""
args = []
current_arg = ''
within_string = False
string_char = ''
prev_char = ''
for char in args_str:
if char in ['"', "'"]:
if not within_string:
within_string = True
string_char = char
elif within_string and prev_char != '\\' and char == string_char:
within_string = False
if char == ',' and not within_string:
args.append(current_arg)
current_arg = ''
else:
current_arg += char
prev_char = char
if current_arg:
args.append(current_arg)
return args
def smart_resize(
height: int,
width: int,
factor: int,
min_pixels: int,
max_pixels: int,
max_aspect_ratio_allowed: Optional[float] = None,
size_can_be_smaller_than_factor: bool = False,
):
"""
The function is modified from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py
Qwen2.5-VL based model need this function to resize screenshots.
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if not size_can_be_smaller_than_factor and (height < factor or width < factor):
raise ValueError(
f"height:{height} or width:{width} must be larger than factor:{factor} "
f"(when size_can_be_smaller_than_factor is False)"
)
elif max_aspect_ratio_allowed is not None and max(height, width) / min(height, width) > max_aspect_ratio_allowed:
raise ValueError(
f"absolute aspect ratio must be smaller than {max_aspect_ratio_allowed}, "
f"got {max(height, width) / min(height, width)}"
f"(when max_aspect_ratio_allowed is not None)"
)
h_bar = max(1, round(height / factor)) * factor
w_bar = max(1, round(width / factor)) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(1, math.floor(height / beta / factor)) * factor
w_bar = max(1, math.floor(width / beta / factor)) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
def _coordinate_projection(x, y, screen_width, screen_height, coordinate_type):
"""Project the coordinates to the absolute scale"""
if coordinate_type == "relative":
return int(round(x * screen_width)), int(round(y * screen_height))
elif coordinate_type == "absolute":
return x, y
elif coordinate_type == "qwen25":
if 0 <= x <= 1 and 0 <= y <= 1:
# If already normalized, treat like "relative"
return int(round(x * screen_width)), int(round(y * screen_height))
height, width = smart_resize(
height=screen_height,
width=screen_width,
factor=28,
min_pixels=3136,
max_pixels=12845056 # We use this max_pixels setting in our training data
)
return int(x / width * screen_width), int(y / height * screen_height)
else:
raise ValueError(f"Unsupported coordinate type: {coordinate_type}")
def project_coordinate_to_absolute_scale(pyautogui_code_relative_coordinates, screen_width, screen_height, coordinate_type="relative"):
"""Convert the relative coordinates in the pyautogui code to absolute coordinates based on the logical screen size."""
if coordinate_type not in ["relative", "relative1000", "absolute", "qwen25"]:
raise ValueError(f"Invalid coordinate type: {coordinate_type}. Expected one of ['relative', 'relative1000', 'absolute', 'qwen25'].")
pattern = r'(pyautogui\.\w+\([^\)]*\))'
matches = re.findall(pattern, pyautogui_code_relative_coordinates)
new_code = pyautogui_code_relative_coordinates
for full_call in matches:
func_name_pattern = r'(pyautogui\.\w+)\((.*)\)'
func_match = re.match(func_name_pattern, full_call, re.DOTALL)
if not func_match:
continue
func_name = func_match.group(1)
args_str = func_match.group(2)
try:
parsed = ast.parse(f"func({args_str})").body[0].value
parsed_args = parsed.args
parsed_keywords = parsed.keywords
except SyntaxError:
return pyautogui_code_relative_coordinates
function_parameters = {
'click': ['x', 'y', 'clicks', 'interval', 'button', 'duration', 'pause'],
'moveTo': ['x', 'y', 'duration', 'tween', 'pause'],
'moveRel': ['xOffset', 'yOffset', 'duration', 'tween', 'pause'],
'dragTo': ['x', 'y', 'duration', 'button', 'mouseDownUp', 'pause'],
'dragRel': ['xOffset', 'yOffset', 'duration', 'button', 'mouseDownUp', 'pause'],
'doubleClick': ['x', 'y', 'interval', 'button', 'duration', 'pause'],
}
func_base_name = func_name.split('.')[-1]
param_names = function_parameters.get(func_base_name, [])
args = {}
for idx, arg in enumerate(parsed_args):
if idx < len(param_names):
param_name = param_names[idx]
arg_value = ast.literal_eval(arg)
args[param_name] = arg_value
try:
for kw in parsed_keywords:
param_name = kw.arg
arg_value = ast.literal_eval(kw.value)
args[param_name] = arg_value
except Exception as e:
logger.error(f"Error parsing keyword arguments: {e}")
return pyautogui_code_relative_coordinates
updated = False
if 'x' in args and 'y' in args:
try:
x_rel = float(args['x'])
y_rel = float(args['y'])
x_abs, y_abs = _coordinate_projection(x_rel, y_rel, screen_width, screen_height, coordinate_type)
logger.warning(f"Projecting coordinates: ({x_rel}, {y_rel}) to ({x_abs}, {y_abs}) using {coordinate_type} projection.")
args['x'] = x_abs
args['y'] = y_abs
updated = True
except ValueError:
pass
if 'xOffset' in args and 'yOffset' in args:
try:
x_rel = float(args['xOffset'])
y_rel = float(args['yOffset'])
x_abs, y_abs = _coordinate_projection(x_rel, y_rel, screen_width, screen_height, coordinate_type)
args['xOffset'] = x_abs
args['yOffset'] = y_abs
updated = True
except ValueError:
pass
if updated:
reconstructed_args = []
for idx, param_name in enumerate(param_names):
if param_name in args:
arg_value = args[param_name]
if isinstance(arg_value, str):
arg_repr = f"'{arg_value}'"
else:
arg_repr = str(arg_value)
reconstructed_args.append(arg_repr)
else:
break
used_params = set(param_names[:len(reconstructed_args)])
for kw in parsed_keywords:
if kw.arg not in used_params:
arg_value = args[kw.arg]
if isinstance(arg_value, str):
arg_repr = f"{kw.arg}='{arg_value}'"
else:
arg_repr = f"{kw.arg}={arg_value}"
reconstructed_args.append(arg_repr)
new_args_str = ', '.join(reconstructed_args)
new_full_call = f"{func_name}({new_args_str})"
new_code = new_code.replace(full_call, new_full_call)
return new_code
def extract_positions_and_instructions(code, action) -> list[dict]:
"""
Extracts all `(x, y)` coordinates (both positional and keyword arguments)
and their associated preceding comments as instructions from Python code.
If there are no comments, use the corresponding action instead.
Args:
code (str): The Python code as a string.
action (str): The low-level action as a string.
Returns:
list[dict]: A list of dictionaries with extracted positions and instructions.
- function (str): The pyautogui function name.
- x (int or float): The x-coordinate.
- y (int or float): The y-coordinate.
- instruction (str): The preceding comment as an instruction.
"""
lines = code.splitlines()
extracted = []
preceding_comment = action # To store the preceding comment
for line in lines:
preceding_comment = action
# Check if the line is a comment and store it
if line.strip().startswith("#"):
preceding_comment = line.strip().lstrip("#").strip() # Clean the comment
# Match pyautogui functions with positional arguments
match_positional = re.match(r"(pyautogui\.\w+)\((\d+(\.\d+)?),\s*(\d+(\.\d+)?).*?\)", line)
if match_positional:
extracted.append({
"function": match_positional.group(1), # pyautogui function name
"x": float(match_positional.group(2)) if '.' in match_positional.group(2)\
else int(match_positional.group(2)), # x-coordinate
"y": float(match_positional.group(4)) if '.' in match_positional.group(4)\
else int(match_positional.group(3)), # y-coordinate
"instruction": preceding_comment, # Use the preceding comment
})
preceding_comment = None # Reset after associating it with a line
continue
# Match pyautogui functions with keyword arguments
match_keyword = re.match(r"(pyautogui\.\w+)\(.*?x=(\d+(\.\d+)?),\s*y=(\d+(\.\d+)?).*?\)", line)
if match_keyword:
extracted.append({
"function": match_keyword.group(1), # pyautogui function name
"x": float(match_keyword.group(2)) if '.' in match_keyword.group(2)\
else int(match_keyword.group(2)), # x-coordinate
"y": float(match_keyword.group(4)) if '.' in match_keyword.group(4)\
else int(match_keyword.group(3)), # y-coordinate
"instruction": preceding_comment, # Use the preceding comment
})
preceding_comment = None # Reset after associating it with a line
logger.info(f"Grounding extracted:\n{extracted}")
return extracted
def update_code_with_new_coordinates(code, updated_positions):
"""
Replaces old `(x, y)` coordinates (both positional and keyword arguments)
with updated ones in the code, handling multiple occurrences correctly.
Args:
code (str): The original Python code as a string.
updated_positions (list): A list of dictionaries with updated positions.
Returns:
str: The updated Python code.
"""
lines = code.splitlines()
updated_code_lines = []
position_index = 0 # Tracks which position update to use
for line in lines:
if position_index < len(updated_positions):
# Get the next update position
update = updated_positions[position_index]
function_pattern_positional = rf"{update['function']}\(\d+(\.\d+)?, \d+(\.\d+)?"
function_pattern_keyword = rf"{update['function']}\(.*?x=\d+(\.\d+)?, y=\d+(\.\d+)?"
if re.search(function_pattern_positional, line):
# Replace positional arguments
line = re.sub(
function_pattern_positional,
f"{update['function']}({update['x']}, {update['y']}",
line,
count=1
)
position_index += 1 # Move to the next update
elif re.search(function_pattern_keyword, line):
# Replace keyword arguments
line = re.sub(
function_pattern_keyword,
f"{update['function']}(x={update['x']}, y={update['y']}",
line,
count=1
)
position_index += 1 # Move to the next update
updated_code_lines.append(line)
return "\n".join(updated_code_lines)
def transform_agnet_action_to_code_block(action):
"""Transform the agent action to a code block: not used in agent, for logging only"""
if "computer.terminate" in action or "browser.select_option" in action or "browser.clear" in action:
return f"```code\n{action}\n```"
else:
return f"```python\n{action}\n```"
class OpenCUAAgent:
"""
OpenCUA Agent for desktop automation tasks.
This class implements a OpenCUA Model based agent that can observe
desktop environments through screenshots and execute mouse/keyboard actions
via PyAutoGUI to complete automation tasks.
Attributes:
model (str): Name of the language model being used
history_type (str): Type of history recording mechanism
actions (list): History of executed actions
observations (list): History of environment observations
cots (list): Chain of thought reasoning records
"""
def __init__(
self,
model: str, # OpenCUA model name
history_type: str, # History step type: action_history, thought_history, observation_history
max_image_history_length: int = 3, # The max number of images in the history
platform: str = "ubuntu", # The platform of the computer
max_tokens: int = 1500, # The max number of tokens in the response
top_p: float = 0.9, # The top p value in the response
temperature: float = 0, # The temperature value in the response
action_space: str = "pyautogui", # The action space: pyautogui
observation_type: str = "screenshot", # The observation type: screenshot
cot_level: str = "l2", # The CoT level: l1, l2, l3
screen_size: Tuple[int, int] = (1920, 1080), # The screen size
coordinate_type: str = "relative", # The coordinate type: relative, absolute, qwen25
**kwargs
):
assert coordinate_type in ["relative", "absolute", "qwen25"]
assert action_space in ["pyautogui"], "Invalid action space"
assert observation_type in ["screenshot"], "Invalid observation type"
assert history_type in ["action_history", "thought_history", "observation_history"]
assert model is not None, "Model cannot be None"
self.model = model
self.platform = platform
self.max_tokens = max_tokens
self.top_p = top_p
self.temperature = temperature
self.action_space = action_space
self.observation_type = observation_type
self.history_type = history_type
self.coordinate_type = coordinate_type
self.cot_level = cot_level
self.screen_size = screen_size
self.max_image_history_length = max_image_history_length
if history_type == "action_history":
self.HISTORY_TEMPLATE = ACTION_HISTORY_TEMPLATE
elif history_type == "thought_history":
self.HISTORY_TEMPLATE = THOUGHT_HISTORY_TEMPLATE
elif history_type == "observation_history":
self.HISTORY_TEMPLATE = OBSERVATION_HISTORY_TEMPLATE
else:
raise ValueError(f"Invalid history type: {history_type}")
if cot_level == "l3":
self.SYSTEM_PROMPT = AGNET_SYS_PROMPT_L3
elif cot_level == "l2":
self.SYSTEM_PROMPT = AGNET_SYS_PROMPT_L2
elif cot_level == "l1":
self.SYSTEM_PROMPT = AGNET_SYS_PROMPT_L1
else:
raise ValueError(f"Invalid COT level: {cot_level}")
self.actions = []
self.observations = []
self.cots = []
def reset(self, _logger=None):
global logger
logger = _logger if _logger is not None else logging.getLogger("desktopenv.agent")
self.observations = []
self.cots = []
self.actions = []
def _scale_scroll_for_windows(self, code: str, factor: int = 50) -> str:
""" pyautogui.scroll has a different scale on Ubuntu and Windows, multiple 'factor' when scrolling on Windows system"""
if self.platform.lower() != "windows":
return code
pattern_pos = re.compile(r'(pyautogui\.scroll\()\s*([-+]?\d+)\s*\)')
code = pattern_pos.sub(lambda m: f"{m.group(1)}{int(m.group(2))*factor})", code)
return code
def predict(self, instruction: str, obs: Dict, **kwargs) -> Tuple[str, List[str], Dict]:
"""
Predict the next action(s) based on the current observation.
"""
if "step_idx" in kwargs:
logger.info(f"========= {self.model} Step {kwargs['step_idx']} =======")
else:
logger.info(f"========================== {self.model} ===================================")
logger.info(f"Instruction: \n{instruction}")
messages = []
messages.append({
"role": "system",
"content": self.SYSTEM_PROMPT
})
history_step_texts = []
for i in range(len(self.actions)):
if i > len(self.actions) - self.max_image_history_length:
messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{encode_image(self.observations[i]['screenshot'])}"}
}
]
})
history_content = STEP_TEMPLATE.format(step_num=i+1) + self.HISTORY_TEMPLATE.format(
observation=self.cots[i].get('observation'),
thought=self.cots[i].get('thought'),
action=self.cots[i].get('action')
)
messages.append({
"role": "assistant",
"content": history_content
})
else:
history_content = STEP_TEMPLATE.format(step_num=i+1) + self.HISTORY_TEMPLATE.format(
observation=self.cots[i].get('observation'),
thought=self.cots[i].get('thought'),
action=self.cots[i].get('action')
)
history_step_texts.append(history_content)
if i == len(self.actions) - self.max_image_history_length:
messages.append({
"role":"assistant",
"content": "\n".join(history_step_texts)
})
messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{encode_image(obs['screenshot'])}"}
},
{
"type": "text",
"text": INSTRUTION_TEMPLATE.format(instruction=instruction)
}
]
})
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"temperature": self.temperature
}, self.model)
logger.info(f"Model Output: \n{response}")
if not response:
logger.error("No response found in the response.")
return "ERROR", ["DONE"], {}
low_level_instruction, pyautogui_actions, other_cot = parse_response_to_cot_and_action(response, self.screen_size, self.coordinate_type)
if not pyautogui_actions or len(pyautogui_actions) == 0:
logger.error("No pyautogui actions found in the response.")
return response, ["FAIL"], {}
pyautogui_actions = [
self._scale_scroll_for_windows(code) for code in pyautogui_actions
]
self.observations.append(obs)
logger.info(f"Parsed Low-level Action: \n{low_level_instruction}")
logger.info(f"Parsed pyautogui Action: \n{pyautogui_actions}")
self.actions.append(low_level_instruction)
if 'action' not in other_cot or not other_cot['action'] or 'thought' not in other_cot or not other_cot['thought']:
logger.error("Error! no action/thought in cot")
logger.error(f"response: {response}")
logger.error(f"cot: {other_cot}")
self.cots.append(other_cot)
# Print message structure if needed
# messages_to_print = []
# current_image = 1
# for msg in messages:
# msg_copy = copy.deepcopy(msg)
# if isinstance(msg_copy['content'], list):
# for content in msg_copy['content']:
# if content['type'] == 'image_url':
# content['image_url']['url'] = f'Image {current_image}'
# current_image += 1
# messages_to_print.append(msg_copy)
# messages_to_print.append({
# "new_step_cot": other_cot,
# "response": response
# })
# logger.info(json.dumps(messages_to_print, indent=2))
logger.info(f"New step cot: {other_cot}")
return response, pyautogui_actions, {}
@backoff.on_exception(
backoff.constant,
# here you should add more model exceptions as you want,
# but you are forbidden to add "Exception", that is, a common type of exception
# because we want to catch this kind of Exception in the outside to ensure
# each example won't exceed the time limit
(
Exception
),
interval=30,
max_tries=10
)
def call_llm(self, payload, model):
"""Call the LLM API"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['OPENCUA_API_KEY']}"
}
for _ in range(30):
response = httpx.post(
os.environ['OPENCUA_URL'],
headers=headers,
json=payload,
timeout=500,
verify=False
)
if response.status_code != 200:
logger.error("Failed to call LLM: " + response.text)
logger.error("Retrying...")
time.sleep(5)
else:
response = response.json()
finish_reason = response["choices"][0].get("finish_reason")
if finish_reason is not None and finish_reason == "stop": # for most of the time, length will not exceed max_tokens
return response['choices'][0]['message']['content']
else:
logger.error("LLM did not finish properly, retrying...")
time.sleep(5)