mirrored 16 minutes ago
0
Linxin SongCoACT initialize (#292) b968155
# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
#
# SPDX-License-Identifier: Apache-2.0
#
# Portions derived from  https://github.com/microsoft/autogen are under the MIT License.
# SPDX-License-Identifier: MIT
from __future__ import annotations

import logging
import sqlite3
import uuid
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, TypeVar

from .logger.base_logger import BaseLogger, LLMConfig
from .logger.logger_factory import LoggerFactory

if TYPE_CHECKING:
    from openai import AzureOpenAI, OpenAI
    from openai.types.chat import ChatCompletion

    from . import Agent, ConversableAgent, OpenAIWrapper
    from .oai.anthropic import AnthropicClient
    from .oai.bedrock import BedrockClient
    from .oai.cerebras import CerebrasClient
    from .oai.cohere import CohereClient
    from .oai.gemini import GeminiClient
    from .oai.groq import GroqClient
    from .oai.mistral import MistralAIClient
    from .oai.ollama import OllamaClient
    from .oai.together import TogetherClient

logger = logging.getLogger(__name__)

autogen_logger = None
is_logging = False

F = TypeVar("F", bound=Callable[..., Any])


def start(
    logger: Optional[BaseLogger] = None,
    logger_type: Literal["sqlite", "file"] = "sqlite",
    config: Optional[dict[str, Any]] = None,
) -> str:
    """Start logging for the runtime.

    Args:
        logger (BaseLogger):    A logger instance
        logger_type (str):      The type of logger to use (default: sqlite)
        config (dict):          Configuration for the logger
    Returns:
        session_id (str(uuid.uuid4)):       a unique id for the logging session
    """
    global autogen_logger
    global is_logging

    autogen_logger = logger or LoggerFactory.get_logger(logger_type=logger_type, config=config)

    try:
        session_id = autogen_logger.start()
        is_logging = True
    except Exception as e:
        logger.error(f"[runtime logging] Failed to start logging: {e}")
    finally:
        return session_id


def log_chat_completion(
    invocation_id: uuid.UUID,
    client_id: int,
    wrapper_id: int,
    agent: str | Agent,
    request: dict[str, float | str | list[dict[str, str]]],
    response: str | "ChatCompletion",
    is_cached: int,
    cost: float,
    start_time: str,
) -> None:
    if autogen_logger is None:
        logger.error("[runtime logging] log_chat_completion: autogen logger is None")
        return

    autogen_logger.log_chat_completion(
        invocation_id, client_id, wrapper_id, agent, request, response, is_cached, cost, start_time
    )


def log_new_agent(agent: ConversableAgent, init_args: dict[str, Any]) -> None:
    if autogen_logger is None:
        logger.error("[runtime logging] log_new_agent: autogen logger is None")
        return

    autogen_logger.log_new_agent(agent, init_args)


def log_event(source: str | Agent, name: str, **kwargs: dict[str, Any]) -> None:
    if autogen_logger is None:
        logger.error("[runtime logging] log_event: autogen logger is None")
        return

    autogen_logger.log_event(source, name, **kwargs)


def log_function_use(agent: str | Agent, function: F, args: dict[str, Any], returns: any):
    if autogen_logger is None:
        logger.error("[runtime logging] log_function_use: autogen logger is None")
        return

    autogen_logger.log_function_use(agent, function, args, returns)


def log_new_wrapper(wrapper: OpenAIWrapper, init_args: dict[str, LLMConfig | list[LLMConfig]]) -> None:
    if autogen_logger is None:
        logger.error("[runtime logging] log_new_wrapper: autogen logger is None")
        return

    autogen_logger.log_new_wrapper(wrapper, init_args)


def log_new_client(
    client: (
        AzureOpenAI
        | OpenAI
        | CerebrasClient
        | GeminiClient
        | AnthropicClient
        | MistralAIClient
        | TogetherClient
        | GroqClient
        | CohereClient
        | OllamaClient
        | BedrockClient
    ),
    wrapper: OpenAIWrapper,
    init_args: dict[str, Any],
) -> None:
    if autogen_logger is None:
        logger.error("[runtime logging] log_new_client: autogen logger is None")
        return

    autogen_logger.log_new_client(client, wrapper, init_args)


def stop() -> None:
    global is_logging
    if autogen_logger:
        autogen_logger.stop()
    is_logging = False


def get_connection() -> None | sqlite3.Connection:
    if autogen_logger is None:
        logger.error("[runtime logging] get_connection: autogen logger is None")
        return None

    return autogen_logger.get_connection()


def logging_enabled() -> bool:
    return is_logging