/
OS-Worldb968155
# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
#
# SPDX-License-Identifier: Apache-2.0
#
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
# SPDX-License-Identifier: MIT
"""Create an OpenAI-compatible client using Groq's API.
Example:
```python
llm_config = {
"config_list": [{"api_type": "groq", "model": "mixtral-8x7b-32768", "api_key": os.environ.get("GROQ_API_KEY")}]
}
agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)
```
Install Groq's python library using: pip install --upgrade groq
Resources:
- https://console.groq.com/docs/quickstart
"""
from __future__ import annotations
import copy
import os
import time
import warnings
from typing import Any, Literal, Optional
from pydantic import Field
from ..import_utils import optional_import_block, require_optional_import
from ..llm_config import LLMConfigEntry, register_llm_config
from .client_utils import should_hide_tools, validate_parameter
from .oai_models import ChatCompletion, ChatCompletionMessage, ChatCompletionMessageToolCall, Choice, CompletionUsage
with optional_import_block():
from groq import Groq, Stream
# Cost per thousand tokens - Input / Output (NOTE: Convert $/Million to $/K)
GROQ_PRICING_1K = {
"llama3-70b-8192": (0.00059, 0.00079),
"mixtral-8x7b-32768": (0.00024, 0.00024),
"llama3-8b-8192": (0.00005, 0.00008),
"gemma-7b-it": (0.00007, 0.00007),
}
@register_llm_config
class GroqLLMConfigEntry(LLMConfigEntry):
api_type: Literal["groq"] = "groq"
frequency_penalty: float = Field(default=None, ge=-2, le=2)
max_tokens: int = Field(default=None, ge=0)
presence_penalty: float = Field(default=None, ge=-2, le=2)
seed: int = Field(default=None)
stream: bool = Field(default=False)
temperature: float = Field(default=1, ge=0, le=2)
top_p: float = Field(default=None)
hide_tools: Literal["if_all_run", "if_any_run", "never"] = "never"
tool_choice: Optional[Literal["none", "auto", "required"]] = None
def create_client(self):
raise NotImplementedError("GroqLLMConfigEntry.create_client is not implemented.")
class GroqClient:
"""Client for Groq's API."""
def __init__(self, **kwargs):
"""Requires api_key or environment variable to be set
Args:
**kwargs: Additional parameters to pass to the Groq API
"""
# Ensure we have the api_key upon instantiation
self.api_key = kwargs.get("api_key")
if not self.api_key:
self.api_key = os.getenv("GROQ_API_KEY")
assert self.api_key, (
"Please include the api_key in your config list entry for Groq or set the GROQ_API_KEY env variable."
)
if "response_format" in kwargs and kwargs["response_format"] is not None:
warnings.warn("response_format is not supported for Groq API, it will be ignored.", UserWarning)
self.base_url = kwargs.get("base_url")
def message_retrieval(self, response) -> list:
"""Retrieve and return a list of strings or a list of Choice.Message from the response.
NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
"""
return [choice.message for choice in response.choices]
def cost(self, response) -> float:
return response.cost
@staticmethod
def get_usage(response) -> dict:
"""Return usage summary of the response using RESPONSE_USAGE_KEYS."""
# ... # pragma: no cover
return {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
"cost": response.cost,
"model": response.model,
}
def parse_params(self, params: dict[str, Any]) -> dict[str, Any]:
"""Loads the parameters for Groq API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults"""
groq_params = {}
# Check that we have what we need to use Groq's API
# We won't enforce the available models as they are likely to change
groq_params["model"] = params.get("model")
assert groq_params["model"], (
"Please specify the 'model' in your config list entry to nominate the Groq model to use."
)
# Validate allowed Groq parameters
# https://console.groq.com/docs/api-reference#chat
groq_params["frequency_penalty"] = validate_parameter(
params, "frequency_penalty", (int, float), True, None, (-2, 2), None
)
groq_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, None, (0, None), None)
groq_params["presence_penalty"] = validate_parameter(
params, "presence_penalty", (int, float), True, None, (-2, 2), None
)
groq_params["seed"] = validate_parameter(params, "seed", int, True, None, None, None)
groq_params["stream"] = validate_parameter(params, "stream", bool, True, False, None, None)
groq_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, 1, (0, 2), None)
groq_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None)
if "tool_choice" in params:
groq_params["tool_choice"] = validate_parameter(
params, "tool_choice", str, True, None, None, ["none", "auto", "required"]
)
# Groq parameters not supported by their models yet, ignoring
# logit_bias, logprobs, top_logprobs
# Groq parameters we are ignoring:
# n (must be 1), response_format (to enforce JSON but needs prompting as well), user,
# parallel_tool_calls (defaults to True), stop
# function_call (deprecated), functions (deprecated)
# tool_choice (none if no tools, auto if there are tools)
return groq_params
@require_optional_import("groq", "groq")
def create(self, params: dict) -> ChatCompletion:
messages = params.get("messages", [])
# Convert AG2 messages to Groq messages
groq_messages = oai_messages_to_groq_messages(messages)
# Parse parameters to the Groq API's parameters
groq_params = self.parse_params(params)
# Add tools to the call if we have them and aren't hiding them
if "tools" in params:
hide_tools = validate_parameter(
params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
)
if not should_hide_tools(groq_messages, params["tools"], hide_tools):
groq_params["tools"] = params["tools"]
groq_params["messages"] = groq_messages
# We use chat model by default, and set max_retries to 5 (in line with typical retries loop)
client = Groq(api_key=self.api_key, max_retries=5, base_url=self.base_url)
# Token counts will be returned
prompt_tokens = 0
completion_tokens = 0
total_tokens = 0
# Streaming tool call recommendations
streaming_tool_calls = []
ans = None
response = client.chat.completions.create(**groq_params)
if groq_params["stream"]:
# Read in the chunks as they stream, taking in tool_calls which may be across
# multiple chunks if more than one suggested
ans = ""
for chunk in response:
ans = ans + (chunk.choices[0].delta.content or "")
if chunk.choices[0].delta.tool_calls:
# We have a tool call recommendation
for tool_call in chunk.choices[0].delta.tool_calls:
streaming_tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
type="function",
)
)
if chunk.choices[0].finish_reason:
prompt_tokens = chunk.x_groq.usage.prompt_tokens
completion_tokens = chunk.x_groq.usage.completion_tokens
total_tokens = chunk.x_groq.usage.total_tokens
else:
# Non-streaming finished
ans: str = response.choices[0].message.content
prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens
if response is not None:
if isinstance(response, Stream):
# Streaming response
if chunk.choices[0].finish_reason == "tool_calls":
groq_finish = "tool_calls"
tool_calls = streaming_tool_calls
else:
groq_finish = "stop"
tool_calls = None
response_content = ans
response_id = chunk.id
else:
# Non-streaming response
# If we have tool calls as the response, populate completed tool calls for our return OAI response
if response.choices[0].finish_reason == "tool_calls":
groq_finish = "tool_calls"
tool_calls = []
for tool_call in response.choices[0].message.tool_calls:
tool_calls.append(
ChatCompletionMessageToolCall(
id=tool_call.id,
function={"name": tool_call.function.name, "arguments": tool_call.function.arguments},
type="function",
)
)
else:
groq_finish = "stop"
tool_calls = None
response_content = response.choices[0].message.content
response_id = response.id
else:
raise RuntimeError("Failed to get response from Groq after retrying 5 times.")
# 3. convert output
message = ChatCompletionMessage(
role="assistant",
content=response_content,
function_call=None,
tool_calls=tool_calls,
)
choices = [Choice(finish_reason=groq_finish, index=0, message=message)]
response_oai = ChatCompletion(
id=response_id,
model=groq_params["model"],
created=int(time.time()),
object="chat.completion",
choices=choices,
usage=CompletionUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
),
cost=calculate_groq_cost(prompt_tokens, completion_tokens, groq_params["model"]),
)
return response_oai
def oai_messages_to_groq_messages(messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""Convert messages from OAI format to Groq's format.
We correct for any specific role orders and types.
"""
groq_messages = copy.deepcopy(messages)
# Remove the name field
for message in groq_messages:
if "name" in message:
message.pop("name", None)
return groq_messages
def calculate_groq_cost(input_tokens: int, output_tokens: int, model: str) -> float:
"""Calculate the cost of the completion using the Groq pricing."""
total = 0.0
if model in GROQ_PRICING_1K:
input_cost_per_k, output_cost_per_k = GROQ_PRICING_1K[model]
input_cost = (input_tokens / 1000) * input_cost_per_k
output_cost = (output_tokens / 1000) * output_cost_per_k
total = input_cost + output_cost
else:
warnings.warn(f"Cost calculation not available for model {model}", UserWarning)
return total