mirrored 13 minutes ago
0
Linxin SongCoACT initialize (#292) b968155
# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
#
# SPDX-License-Identifier: Apache-2.0
#
# Portions derived from  https://github.com/microsoft/autogen are under the MIT License.
# SPDX-License-Identifier: MIT
from __future__ import annotations

import sqlite3
import uuid
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union

if TYPE_CHECKING:
    from openai import AzureOpenAI, OpenAI
    from openai.types.chat import ChatCompletion

    from .. import Agent, ConversableAgent, OpenAIWrapper

F = TypeVar("F", bound=Callable[..., Any])
ConfigItem = dict[str, Union[str, list[str]]]
LLMConfig = dict[str, Union[None, float, int, ConfigItem, list[ConfigItem]]]


class BaseLogger(ABC):
    @abstractmethod
    def start(self) -> str:
        """Open a connection to the logging database, and start recording.

        Returns:
            session_id (str):     a unique id for the logging session
        """
        ...

    @abstractmethod
    def log_chat_completion(
        self,
        invocation_id: uuid.UUID,
        client_id: int,
        wrapper_id: int,
        source: str | Agent,
        request: dict[str, float | str | list[dict[str, str]]],
        response: str | ChatCompletion,
        is_cached: int,
        cost: float,
        start_time: str,
    ) -> None:
        """Log a chat completion to database.

        In AG2, chat completions are somewhat complicated because they are handled by the `autogen.oai.OpenAIWrapper` class.
        One invocation to `create` can lead to multiple underlying OpenAI calls, depending on the llm_config list used, and
        any errors or retries.

        Args:
            invocation_id (uuid):               A unique identifier for the invocation to the OpenAIWrapper.create method call
            client_id (int):                    A unique identifier for the underlying OpenAI client instance
            wrapper_id (int):                   A unique identifier for the OpenAIWrapper instance
            source (str or Agent):              The source/creator of the event as a string name or an Agent instance
            request (dict):                     A dictionary representing the request or call to the OpenAI client endpoint
            response (str or ChatCompletion):   The response from OpenAI
            is_cached (int):                    1 if the response was a cache hit, 0 otherwise
            cost(float):                        The cost for OpenAI response
            start_time (str):                   A string representing the moment the request was initiated
        """
        ...

    @abstractmethod
    def log_new_agent(self, agent: ConversableAgent, init_args: dict[str, Any]) -> None:
        """Log the birth of a new agent.

        Args:
            agent (ConversableAgent):   The agent to log.
            init_args (dict):           The arguments passed to the construct the conversable agent
        """
        ...

    @abstractmethod
    def log_event(self, source: str | Agent, name: str, **kwargs: dict[str, Any]) -> None:
        """Log an event for an agent.

        Args:
            source (str or Agent):      The source/creator of the event as a string name or an Agent instance
            name (str):                 The name of the event
            kwargs (dict):              The event information to log
        """
        ...

    @abstractmethod
    def log_new_wrapper(self, wrapper: OpenAIWrapper, init_args: dict[str, LLMConfig | list[LLMConfig]]) -> None:
        """Log the birth of a new OpenAIWrapper.

        Args:
            wrapper (OpenAIWrapper):    The wrapper to log.
            init_args (dict):           The arguments passed to the construct the wrapper
        """
        ...

    @abstractmethod
    def log_new_client(self, client: AzureOpenAI | OpenAI, wrapper: OpenAIWrapper, init_args: dict[str, Any]) -> None:
        """Log the birth of a new OpenAIWrapper.

        Args:
            client: The client to log.
            wrapper: The wrapper that created the client.
            init_args: The arguments passed to the construct the client.
        """
        ...

    @abstractmethod
    def log_function_use(self, source: str | Agent, function: F, args: dict[str, Any], returns: Any) -> None:
        """Log the use of a registered function (could be a tool)

        Args:
            source (str or Agent):      The source/creator of the event as a string name or an Agent instance
            function (F):               The function information
            args (dict):                The function args to log
            returns (any):              The return
        """

    @abstractmethod
    def stop(self) -> None:
        """Close the connection to the logging database, and stop logging."""
        ...

    @abstractmethod
    def get_connection(self) -> None | sqlite3.Connection:
        """Return a connection to the logging database."""
        ...