/
OS-Worlda4f8fe2import inspect
import json
import os
import textwrap
current_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
def generate_func(json_data):
    # 收集所有类名和它们的函数
    class_funcs = {}
    no_class_funcs = []
    cls_name = ""
    for item in json_data:
        if item["type"] == "function":
            func = item["function"]
            func_parts = func["name"].split(".")
            if len(func_parts) == 2:
                class_name, func_name = func_parts
                if class_name not in class_funcs:
                    class_funcs[class_name] = []
                class_funcs[class_name].append(item)
            else:
                no_class_funcs.append(item)
    code = ""
    # 生成有类的函数
    for class_name, funcs in class_funcs.items():
        code += f"class {class_name}:\n"
        cls_name = class_name
        for item in funcs:
            func = item["function"]
            func_name = func["name"].split(".")[-1]
            description = func["description"]
            params = func["parameters"]["properties"]
            required = func["parameters"].get("required", [])
            # 构建参数列表
            param_list = ["cls"]
            # 首先添加必需参数
            for param_name in required:
                param_list.append(f"{param_name}")
            # 然后添加可选参数
            for param_name in params:
                if param_name not in required:
                    param_list.append(f"{param_name}")  # 可选参数默认值设为None
            # 构建函数定义
            func_def = f"    def {func_name}({', '.join(param_list)}):\n"
            # 构建文档字符串
            docstring = f'        """\n        {description}\n\n        Args:\n'
            if len(param_list) == 1:  # 只有cls参数
                docstring += "            None\n"
            else:
                # 首先记录必需参数
                for param_name in required:
                    param_type = params[param_name]["type"]
                    param_desc = params[param_name].get("description", "")
                    docstring += f"            {param_name} ({param_type}): {param_desc}\n"
                # 然后记录可选参数
                for param_name in params:
                    if param_name not in required:
                        param_type = params[param_name]["type"]
                        param_desc = params[param_name].get("description", "")
                        docstring += f"            {param_name} ({param_type}, optional): {param_desc}\n"
            docstring += '        """\n'
            code += func_def + docstring + "\n"
        code += "\n"
    # 生成没有类的函数
    for item in no_class_funcs:
        func = item["function"]
        func_name = func["name"]
        description = func["description"]
        params = func["parameters"]["properties"]
        required = func["parameters"].get("required", [])
        # 构建参数列表
        param_list = []
        # 首先添加必需参数
        for param_name in required:
            param_list.append(f"{param_name}")
        # 然后添加可选参数
        for param_name in params:
            if param_name not in required:
                param_list.append(f"{param_name}")
        # 构建函数定义
        func_def = f"def {func_name}({', '.join(param_list)}):\n"
        # 构建文档字符串
        docstring = f'    """\n    {description}\n\n    Args:\n'
        if not param_list:
            docstring += "        None\n"
        else:
            # 首先记录必需参数
            for param_name in required:
                param_type = params[param_name]["type"]
                param_desc = params[param_name].get("description", "")
                docstring += f"        {param_name} ({param_type}): {param_desc}\n"
            # 然后记录可选参数
            for param_name in params:
                if param_name not in required:
                    param_type = params[param_name]["type"]
                    param_desc = params[param_name].get("description", "")
                    docstring += f"        {param_name} ({param_type}, optional): {param_desc}\n"
        docstring += '    """\n'
        code += func_def + docstring + "\n"
    return code.strip(), cls_name
setup_prompt = """You are a GUI operation agent. You will be given a task and your action history, with current observation ({observation_list}). You should help me control the computer, output the best action step by step to accomplish the task.
You should first generate a plan, reflect on the current observation, then generate actions to complete the task in python-style pseudo code using the predefined functions.
* Output Format:
{format_hint}"""
func_def_template = """* Available Functions:
```python
{class_content}
```"""
note_prompt = """* Note:
- Your code should only be wrapped in ```python```.
- Only **ONE-LINE-OF-CODE** at a time.
- Each code block is context independent, and variables from the previous round cannot be used in the next round.
{relative_coordinate_hint}- Return with `Agent.exit(success=True)` immediately after the task is completed.
- The computer's environment is Linux, e.g., Desktop path is '/home/user/Desktop'
- My computer's password is '{client_password}', feel free to use it when you need sudo rights"""
class Prompt:
    @staticmethod
    def construct_procedural_memory(agent_class, app_name=None, client_password="password", with_image=True, with_atree=False, relative_coordinate=True, glm41v_format=True):
        agent_class_content = "Class Agent:"
        for attr_name in dir(agent_class):
            attr = getattr(agent_class, attr_name)
            if callable(attr) and hasattr(attr, "is_agent_action"):
                # Use inspect to get the full function signature
                signature = inspect.signature(attr)
                agent_class_content += f"""
    def {attr_name}{signature}:
        '''{attr.__doc__}'''
    """
        if app_name is not None:
            tool_path = os.path.join(current_dir, "tools", "apis", f"{app_name.lower()}.json")
            with open(tool_path, "r") as f:
                json_data = json.load(f)
            tool_class_content, tool_class_name = generate_func(json_data)
            agent_class_content += "\n\n{}".format(tool_class_content)
            
        func_def_prompt = func_def_template.format(class_content=agent_class_content.strip())
        # --- dynamic observation list ---
        obs_items = []
        if with_image:
            obs_items.append("screenshot")
        obs_items.append("current app name")
        if with_atree:
            obs_items.append("a11y tree (based on AT-SPI library)")
        obs_items.append("app info")
        obs_items.append("last action result")
        observation_list = ", ".join(obs_items)
        setup_prompt_formatted = setup_prompt.format(
            observation_list=observation_list,
            format_hint="<think>\n{**YOUR-PLAN-AND-THINKING**}</think>\n<answer>```python\n{**ONE-LINE-OF-CODE**}\n```</answer>" if glm41v_format else "<think>\n{**YOUR-PLAN-AND-THINKING**}\n</think>\n```python\n{**ONE-LINE-OF-CODE**}\n```"
        )
        note_prompt_formatted = note_prompt.format(
            relative_coordinate_hint="- The coordinate [x, y] should be normalized to 0-1000, which usually should be the center of a specific target element.\n" if relative_coordinate else "",
            client_password=client_password
        )
        return setup_prompt_formatted, func_def_prompt, note_prompt_formatted
if __name__ == "__main__":
    from grounding_agent import GroundingAgent
    print(Prompt.construct_procedural_memory(GroundingAgent, "vlc"))