import os import re import base64 import requests import logging from typing import Optional, Dict, List, Tuple, Union from loguru import logger import ast import base64 import math import re FINISH_WORD = "finished" WAIT_WORD = "wait" ENV_FAIL_WORD = "error_env" CALL_USER = "call_user" IMAGE_FACTOR = 28 MIN_PIXELS = 100 * 28 * 28 MAX_PIXELS = 16384 * 28 * 28 MAX_RATIO = 200 def convert_point_to_coordinates(text, is_answer=False): # 匹配 后面的四个数字 pattern = r"(\d+)\s+(\d+)" def replace_match(match): x1, y1= map(int, match.groups()) x = (x1 + x1) // 2 # 使用截断取整 y = (y1 + y1) // 2 # 使用截断取整 if is_answer: return f"({x},{y})" # 只返回 (x, y) 格式 return f"({x},{y})" # 返回带标签的格式 # 去掉 [EOS] 并替换 坐标 text = re.sub(r"\[EOS\]", "", text) return re.sub(pattern, replace_match, text).strip() # 定义一个函数来解析每个 action def parse_action(action_str): try: # 解析字符串为 AST 节点 node = ast.parse(action_str, mode='eval') # 确保节点是一个表达式 if not isinstance(node, ast.Expression): raise ValueError("Not an expression") # 获取表达式的主体 call = node.body # 确保主体是一个函数调用 if not isinstance(call, ast.Call): raise ValueError("Not a function call") # 获取函数名 if isinstance(call.func, ast.Name): func_name = call.func.id elif isinstance(call.func, ast.Attribute): func_name = call.func.attr else: func_name = None # 获取关键字参数 kwargs = {} for kw in call.keywords: key = kw.arg # 处理不同类型的值,这里假设都是常量 if isinstance(kw.value, ast.Constant): value = kw.value.value elif isinstance(kw.value, ast.Str): # 兼容旧版本 Python value = kw.value.s else: value = None kwargs[key] = value return { 'function': func_name, 'args': kwargs } except Exception as e: print(f"Failed to parse action '{action_str}': {e}") return None def escape_single_quotes(text): # 匹配未转义的单引号(不匹配 \\') pattern = r"(? int: """Returns the closest integer to 'number' that is divisible by 'factor'.""" return round(number / factor) * factor def ceil_by_factor(number: int, factor: int) -> int: """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" return math.ceil(number / factor) * factor def floor_by_factor(number: int, factor: int) -> int: """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" return math.floor(number / factor) * factor def linear_resize( height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS ) -> tuple[int, int]: if width * height > max_pixels: """ 如果图片超过/低于像素限制,则计算一个缩放因子resize_factor,使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的,确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用 """ resize_factor = math.sqrt(max_pixels / (width * height)) width, height = int(width * resize_factor), int(height * resize_factor) if width * height < min_pixels: resize_factor = math.sqrt(min_pixels / (width * height)) width, height = math.ceil(width * resize_factor), math.ceil(height * resize_factor) return height, width def smart_resize( height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS ) -> tuple[int, int]: """ Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ if max(height, width) / min(height, width) > MAX_RATIO: raise ValueError( f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}" ) h_bar = max(factor, round_by_factor(height, factor)) w_bar = max(factor, round_by_factor(width, factor)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = floor_by_factor(height / beta, factor) w_bar = floor_by_factor(width / beta, factor) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = ceil_by_factor(height * beta, factor) w_bar = ceil_by_factor(width * beta, factor) return h_bar, w_bar def parse_action_to_structure_output(text, factor, origin_resized_height, origin_resized_width, model_type="qwen25vl", max_pixels=16384*28*28, min_pixels=100*28*28): text = text.strip() if "" in text: text = convert_point_to_coordinates(text) if "start_point=" in text: text = text.replace("start_point=", "start_box=") if "end_point=" in text: text = text.replace("end_point=", "end_box=") if "point=" in text: text = text.replace("point=", "start_box=") if model_type == "qwen25vl": smart_resize_height, smart_resize_width = smart_resize(origin_resized_height, origin_resized_width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels) # 正则表达式匹配 Action 字符串 if text.startswith("Thought:"): thought_pattern = r"Thought: (.+?)(?=\s*Action: |$)" thought_hint = "Thought: " elif text.startswith("Reflection:"): thought_pattern = r"Reflection: (.+?)Action_Summary: (.+?)(?=\s*Action: |$)" thought_hint = "Reflection: " elif text.startswith("Action_Summary:"): thought_pattern = r"Action_Summary: (.+?)(?=\s*Action: |$)" thought_hint = "Action_Summary: " else: thought_pattern = r"Thought: (.+?)(?=\s*Action: |$)" thought_hint = "Thought: " reflection, thought = None, None thought_match = re.search(thought_pattern, text, re.DOTALL) if thought_match: if len(thought_match.groups()) == 1: thought = thought_match.group(1).strip() elif len(thought_match.groups()) == 2: thought = thought_match.group(2).strip() reflection = thought_match.group(1).strip() assert "Action:" in text action_str = text.split("Action: ")[-1] tmp_all_action = action_str.split("')\n\n") all_action = [] for action_str in tmp_all_action: if "type(content" in action_str: # 正则表达式匹配 content 中的字符串并转义单引号 def escape_quotes(match): content = match.group(1) # 获取 content 的值 return content # 使用正则表达式进行替换 pattern = r"type\(content='(.*?)'\)" # 匹配 type(content='...') content = re.sub(pattern, escape_quotes, action_str) # 处理字符串 action_str = escape_single_quotes(content) action_str = "type(content='" + action_str + "')" all_action.append(action_str) parsed_actions = [parse_action(action.replace("\n","\\n").lstrip()) for action in all_action] actions = [] for action_instance, raw_str in zip(parsed_actions, all_action): if action_instance == None: print(f"Action can't parse: {raw_str}") raise ValueError(f"Action can't parse: {raw_str}") action_type = action_instance["function"] params = action_instance["args"] # import pdb; pdb.set_trace() action_inputs = {} for param_name, param in params.items(): if param == "": continue param = param.lstrip() # 去掉引号和多余的空格 # 处理start_box或者end_box参数格式 'x1 y1 x2 y2' action_inputs[param_name.strip()] = param if "start_box" in param_name or "end_box" in param_name: ori_box = param # Remove parentheses and split the string by commas numbers = ori_box.replace("(", "").replace(")", "").split(",") # Convert to float and scale by 1000 # Qwen2.5vl output absolute coordinates, qwen2vl output relative coordinates if model_type == "qwen25vl": float_numbers = [] for num_idx, num in enumerate(numbers): num = float(num) if (num_idx + 1) % 2 == 0: float_numbers.append(float(num/smart_resize_height)) else: float_numbers.append(float(num/smart_resize_width)) else: float_numbers = [float(num) / factor for num in numbers] if len(float_numbers) == 2: float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]] action_inputs[param_name.strip()] = str(float_numbers) # import pdb; pdb.set_trace() actions.append({ "reflection": reflection, "thought": thought, "action_type": action_type, "action_inputs": action_inputs, "text": text }) return actions def parsing_response_to_pyautogui_code(responses, image_height: int, image_width:int, input_swap:bool=True, platform:str="Ubuntu") -> str: ''' 将M模型的输出解析为OSWorld中的action,生成pyautogui代码字符串 参数: response: 包含模型输出的字典,结构类似于: { "action_type": "hotkey", "action_inputs": { "hotkey": "v ctrl", "start_box": None, "end_box": None } } 返回: 生成的pyautogui代码字符串 ''' pyautogui_code = f"import pyautogui\nimport time\n" if isinstance(responses, dict): responses = [responses] for response_id, response in enumerate(responses): if "observation" in response: observation = response["observation"] else: observation = "" if "thought" in response: thought = response["thought"] else: thought = "" if response_id == 0: pyautogui_code += f"'''\nObservation:\n{observation}\n\nThought:\n{thought}\n'''\n" else: pyautogui_code += f"\ntime.sleep(1)\n" action_dict = response action_type = action_dict.get("action_type") action_inputs = action_dict.get("action_inputs", {}) if action_type == "hotkey": # Parsing hotkey action if "key" in action_inputs: hotkey = action_inputs.get("key", "") else: hotkey = action_inputs.get("hotkey", "") if hotkey == "arrowleft": hotkey = "left" elif hotkey == "arrowright": hotkey = "right" elif hotkey == "arrowup": hotkey = "up" elif hotkey == "arrowdown": hotkey = "down" if hotkey: # Handle other hotkeys keys = hotkey.split() # Split the keys by space convert_keys = [] for key in keys: if key == "space": key = ' ' convert_keys.append(key) pyautogui_code += f"\npyautogui.hotkey({', '.join([repr(k) for k in convert_keys])})" elif action_type in ["press", "keydown"]: # Parsing press action if "key" in action_inputs: key_to_press = action_inputs.get("key", "") else: key_to_press = action_inputs.get("press", "") if key_to_press == "arrowleft": key_to_press = "left" elif key_to_press == "arrowright": key_to_press = "right" elif key_to_press == "arrowup": key_to_press = "up" elif key_to_press == "arrowdown": key_to_press = "down" elif key_to_press == "space": key_to_press = " " if key_to_press: # Simulate pressing a single key pyautogui_code += f"\npyautogui.keyDown({repr(key_to_press)})" elif action_type in ["release", "keyup"]: # Parsing press action if "key" in action_inputs: key_to_press = action_inputs.get("key", "") else: key_to_press = action_inputs.get("press", "") if key_to_press == "arrowleft": key_to_press = "left" elif key_to_press == "arrowright": key_to_press = "right" elif key_to_press == "arrowup": key_to_press = "up" elif key_to_press == "arrowdown": key_to_press = "down" elif key_to_press == "space": key_to_press = " " if key_to_press: # Simulate pressing a single key pyautogui_code += f"\npyautogui.keyUp({repr(key_to_press)})" elif action_type == "type": # Parsing typing action using clipboard content = action_inputs.get("content", "") content = escape_single_quotes(content) stripped_content = content if content.endswith("\n") or content.endswith("\\n"): stripped_content = stripped_content.rstrip("\\n").rstrip("\n") if content: if input_swap: pyautogui_code += f"\nimport pyperclip" pyautogui_code += f"\npyperclip.copy('{stripped_content}')" pyautogui_code += f"\npyautogui.hotkey('ctrl', 'v')" pyautogui_code += f"\ntime.sleep(0.5)\n" if content.endswith("\n") or content.endswith("\\n"): pyautogui_code += f"\npyautogui.press('enter')" else: pyautogui_code += f"\npyautogui.write('{stripped_content}', interval=0.1)" pyautogui_code += f"\ntime.sleep(0.5)\n" if content.endswith("\n") or content.endswith("\\n"): pyautogui_code += f"\npyautogui.press('enter')" elif action_type in ["drag", "select"]: # Parsing drag or select action based on start and end_boxes start_box = action_inputs.get("start_box") end_box = action_inputs.get("end_box") if start_box and end_box: x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2] sx = round(float((x1 + x2) / 2) * image_width, 3) sy = round(float((y1 + y2) / 2) * image_height, 3) x1, y1, x2, y2 = eval(end_box) # Assuming box is in [x1, y1, x2, y2] ex = round(float((x1 + x2) / 2) * image_width, 3) ey = round(float((y1 + y2) / 2) * image_height, 3) pyautogui_code += ( f"\npyautogui.moveTo({sx}, {sy})\n" f"\npyautogui.dragTo({ex}, {ey}, duration=1.0)\n" ) elif action_type == "scroll": # Parsing scroll action start_box = action_inputs.get("start_box") if start_box: x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2] x = round(float((x1 + x2) / 2) * image_width, 3) y = round(float((y1 + y2) / 2) * image_height, 3) # # 先点对应区域,再滚动 # pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')" else: x = None y = None direction = action_inputs.get("direction", "") if x == None: if "up" in direction.lower(): if platform.lower() == "ubuntu": pyautogui_code += f"\npyautogui.scroll(-5)" elif platform.lower() == "windows": pyautogui_code += f"\npyautogui.scroll(-50)" elif "down" in direction.lower(): if platform.lower() == "ubuntu": pyautogui_code += f"\npyautogui.scroll(5)" elif platform.lower() == "windows": pyautogui_code += f"\npyautogui.scroll(50)" else: if "up" in direction.lower(): if platform.lower() == "ubuntu": pyautogui_code += f"\npyautogui.scroll(5, x={x}, y={y})" elif platform.lower() == "windows": pyautogui_code += f"\npyautogui.scroll(50, x={x}, y={y})" elif "down" in direction.lower(): if platform.lower() == "ubuntu": pyautogui_code += f"\npyautogui.scroll(-5, x={x}, y={y})" elif platform.lower() == "windows": pyautogui_code += f"\npyautogui.scroll(-50, x={x}, y={y})" elif action_type in ["click", "left_single", "left_double", "right_single", "hover"]: # Parsing mouse click actions start_box = action_inputs.get("start_box") start_box = str(start_box) if start_box: start_box = eval(start_box) if len(start_box) == 4: x1, y1, x2, y2 = start_box # Assuming box is in [x1, y1, x2, y2] elif len(start_box) == 2: x1, y1 = start_box x2 = x1 y2 = y1 x = round(float((x1 + x2) / 2) * image_width, 3) y = round(float((y1 + y2) / 2) * image_height, 3) if action_type == "left_single" or action_type == "click": pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')" elif action_type == "left_double": pyautogui_code += f"\npyautogui.doubleClick({x}, {y}, button='left')" elif action_type == "right_single": pyautogui_code += f"\npyautogui.click({x}, {y}, button='right')" elif action_type == "hover": pyautogui_code += f"\npyautogui.moveTo({x}, {y})" elif action_type in ["finished"]: pyautogui_code = f"DONE" else: pyautogui_code += f"\n# Unrecognized action type: {action_type}" return pyautogui_code def add_box_token(input_string): # Step 1: Split the string into individual actions if "Action: " in input_string and "start_box=" in input_string: suffix = input_string.split("Action: ")[0] + "Action: " actions = input_string.split("Action: ")[1:] processed_actions = [] for action in actions: action = action.strip() # Step 2: Extract coordinates (start_box or end_box) using regex coordinates = re.findall(r"(start_box|end_box)='\((\d+),\s*(\d+)\)'", action) updated_action = action # Start with the original action for coord_type, x, y in coordinates: # Convert x and y to integers updated_action = updated_action.replace(f"{coord_type}='({x},{y})'", f"{coord_type}='<|box_start|>({x},{y})<|box_end|>'") processed_actions.append(updated_action) # Step 5: Reconstruct the final string final_string = suffix + "\n\n".join(processed_actions) else: final_string = input_string return final_string COMPUTER_USE_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. ## Output Format You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within tags After the tags, you should place final answer, which concludes your summarized thought and your action. For example, ``` detailed reasoning content here Thought: a small plan and finally summarize your next action (with its target element) in one sentence Action: ... ``` ## Action Space click(point='x1 y1') left_double(point='x1 y1') right_single(point='x1 y1') drag(start_point='x1 y1', end_point='x2 y2') hotkey(key='ctrl c') # Split keys with a space and use lowercase. Also, do not use more than 3 keys in one hotkey action. type(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format. If you want to submit your input, use \\n at the end of content. scroll(point='x1 y1', direction='down or up or right or left') # Show more information on the `direction` side. wait() #Sleep for 5s and take a screenshot to check for any changes. finished(content='xxx') # Use escape characters \\', \\", and \\n in content part to ensure we can parse the content in normal python string format. ## Output Example Now that... Thought: Let's click ... Action: click(point='100 200') ## Note - Use {language} in `Thought` part. - Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part. - If you have executed several same actions (like repeatedly clicking the same point) but the screen keeps no change, please try to execute a modified action when necessary. ## User Instruction {instruction} """ MOBILE_USE_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. ## Output Format ``` Thought: ... Action: ... ``` ## Action Space click(point='x1 y1') long_press(point='x1 y1') type(content='') #If you want to submit your input, use "\\n" at the end of `content`. scroll(point='x1 y1', direction='down or up or right or left') open_app(app_name=\'\') drag(start_point='x1 y1', end_point='x2 y2') press_home() press_back() finished(content='xxx') # Use escape characters \\', \\", and \\n in content part to ensure we can parse the content in normal python string format. ## Note - Use {language} in `Thought` part. - Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part. ## User Instruction {instruction} """ GROUNDING_DOUBAO = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. \n\n## Output Format\n\nAction: ...\n\n\n## Action Space\nclick(point='x1 y1'')\n\n## User Instruction {instruction}""" COMPUTER_USE_NO_THINKING = """You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. ## Output Format ``` Thought: ... Action: ... ``` ## Action Space click(point='x1 y1') left_double(point='x1 y1') right_single(point='x1 y1') drag(start_point='x1 y1', end_point='x2 y2') hotkey(key='ctrl c') # Split keys with a space and use lowercase. Also, do not use more than 3 keys in one hotkey action. type(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format. If you want to submit your input, use \\n at the end of content. scroll(point='x1 y1', direction='down or up or right or left') # Show more information on the `direction` side. wait() #Sleep for 5s and take a screenshot to check for any changes. finished(content='xxx') # Use escape characters \\', \\", and \\n in content part to ensure we can parse the content in normal python string format. ## Note - Use Chinese in `Thought` part. - Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part. ## User Instruction {instruction} """ class UITarsAgent: """ UI-TARS Agent based on Seed1.5-VL model implementation. Integrates the GUI folder UI-TARS-1.5 implementation with the mm_agents architecture. """ def __init__( self, # Model settings model: str, model_type: str, # Generation settings max_tokens: int, top_p: Optional[float], temperature: float, # History settings max_trajectory_length: Optional[int], max_image_history_length: Optional[int], # UI-TARS uses history-5 logic # Prompt settings screenshot_pyautogui_prompt: str = "uitars_v1", # Parse settings which_parsed_actions: str = "all", # Outside infos max_steps: int = 100, # UI-TARS specific settings use_thinking: bool = True, language: str = "Chinese", ): """ Initialize UI-TARS Agent. Args: model: Model name, defaults to doubao-1-5-thinking-vision-pro-250428 api_key: API key for the model service base_url: Base URL for the API service max_tokens: Maximum tokens to generate top_p: Top-p sampling parameter temperature: Temperature for sampling max_trajectory_length: Maximum trajectory history length max_image_history_length: Maximum image history length (UI-TARS uses 5) screenshot_pyautogui_prompt: Prompt version which_parsed_actions: Which actions to parse max_steps: Maximum steps for the agent use_thinking: Whether to use thinking mode language: Language for responses openai_client: OpenAI client instance """ self.model = model self.max_trajectory_length = max_trajectory_length self.logger = logger self.language = language self.thoughts = [] self.actions = [] self.observations = [] self.history_images = [] self.history_responses = [] if use_thinking: self.system_prompt = COMPUTER_USE_DOUBAO else: self.system_prompt = COMPUTER_USE_NO_THINKING self.action_parse_res_factor = 1000 self.model_type = model_type self.history_n = 5 self.top_p = top_p self.temperature = temperature self.max_tokens = max_tokens self.platform = "ubuntu" self.use_thinking = use_thinking self.inference_func = self.inference_with_thinking if use_thinking else self.inference_without_thinking def reset(self, _logger=None): global logger logger = _logger if _logger is not None else logging.getLogger("desktopenv.agent") self.thoughts = [] self.actions = [] self.observations = [] self.history_images = [] self.history_responses = [] def pretty_print_messages(self, messages): """Pretty print messages while hiding base64 encoded images.""" def format_message(msg): if not isinstance(msg, dict): return str(msg) formatted = {} for key, value in msg.items(): if key == "content": if isinstance(value, list): formatted_content = [] for item in value: if isinstance(item, dict) and "type" in item: if item["type"] == "image_url" and "image_url" in item: # Replace base64 image with placeholder formatted_content.append({ "type": "image_url", "image_url": {"url": "[BASE64_IMAGE_DATA]"} }) else: formatted_content.append(item) else: formatted_content.append(item) formatted[key] = formatted_content else: formatted[key] = value else: formatted[key] = value return formatted if isinstance(messages, list): return [format_message(msg) for msg in messages] return format_message(messages) def inference_with_thinking(self, messages): api_key = os.environ['DOUBAO_API_KEY'] api_url = os.environ['DOUBAO_API_URL'] headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data = { "model": self.model, "messages": messages, "thinking": {"type": "enabled"}, "max_tokens": self.max_tokens, "top_p": self.top_p, "temperature": self.temperature, } response = requests.post(api_url, headers=headers, json=data) print(response.json()["choices"][0]) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: return { "error": f"Request failed with status code {response.status_code}", "details": response.text } def inference_without_thinking(self, messages): api_key = os.environ['DOUBAO_API_KEY'] api_url = os.environ['DOUBAO_API_URL'] headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data = { "model": self.model, "messages": messages, "thinking": {"type": "disabled"}, "max_tokens": self.max_tokens, "top_p": self.top_p, "temperature": self.temperature, } response = requests.post(api_url, headers=headers, json=data) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: print(f"Request failed with status code {response.status_code}") print(response.json()) return { "error": f"Request failed with status code {response.status_code}", "details": response.text } def predict(self, task_instruction: str, obs: dict) -> Tuple[Union[str, Dict, None], List]: """Predict the next action based on the current observation.""" self.task_instruction = task_instruction assert len(self.observations) == len(self.actions) and len(self.actions) == len( self.thoughts ), "The number of observations and actions should be the same." # Convert binary screenshot to base64 if needed screenshot = obs["screenshot"] if isinstance(screenshot, bytes): screenshot = base64.b64encode(screenshot).decode('utf-8') self.history_images.append(screenshot) self.observations.append( {"screenshot": screenshot, "accessibility_tree": None} ) if len(self.history_images) > self.history_n: self.history_images = self.history_images[-self.history_n:] images = self.history_images messages = [ { "role": "user", "content": [{"type": "text", "text": self.system_prompt.format( instruction=task_instruction, language=self.language )}] } ] image_num = 0 if len(self.history_responses) > 0: for history_idx, history_response in enumerate(self.history_responses): # send at most history_n images to the model if history_idx + self.history_n > len(self.history_responses): messages.append({ "role": "user", "content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}] }) image_num += 1 messages.append({ "role": "assistant", "content": history_response }) messages.append({ "role": "user", "content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}] }) image_num += 1 else: messages.append({ "role": "user", "content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images[image_num]}"}}] }) image_num += 1 try_times = 3 origin_resized_height = 1080 origin_resized_width = 1920 prediction = None while True: if try_times <= 0: self.logger.error(f"Reach max retry times to fetch response from client, as error flag.") return prediction, ["FAIL"] try: logger.info(f"Messages: {self.pretty_print_messages(messages[-1])}") prediction = self.inference_func(messages) except Exception as e: self.logger.error(f"Error when fetching response from client, with error:\n{e}") prediction = None try_times -= 1 try: parsed_dict = parse_action_to_structure_output(prediction, self.action_parse_res_factor, origin_resized_height, origin_resized_width, self.model_type) parsed_pyautogui_code = parsing_response_to_pyautogui_code(parsed_dict, origin_resized_height, origin_resized_width, platform=self.platform) break except Exception as e: self.logger.error(f"Error when parsing response from client, with error:\n{e}") prediction = None try_times -= 1 self.history_responses.append(prediction) try: parsed_dict = parse_action_to_structure_output(prediction, self.action_parse_res_factor, origin_resized_height, origin_resized_width, self.model_type) parsed_pyautogui_code = parsing_response_to_pyautogui_code(parsed_dict, origin_resized_height, origin_resized_width, platform=self.platform) except Exception as e: self.logger.error(f"Parsing action error: {prediction}, with error:\n{e}") return prediction, ["FAIL"] thoughts = "" for parsed_response in parsed_dict: if "thought" in parsed_response and parsed_response["thought"]: thoughts += parsed_response["thought"] if thoughts: self.thoughts.append(thoughts) for parsed_response in parsed_dict: if "action_type" in parsed_response: if parsed_response["action_type"] == FINISH_WORD: self.actions.append(["DONE"]) return prediction, ["DONE"] elif parsed_response["action_type"] == WAIT_WORD: self.actions.append(["WAIT"]) return prediction, ["WAIT"] elif parsed_response["action_type"] == ENV_FAIL_WORD: self.actions.append(["FAIL"]) return prediction, ["FAIL"] self.actions.append([parsed_pyautogui_code]) return prediction, [parsed_pyautogui_code]