import os import requests def send_messages(payload): # URL to your proxy for calling LLMs proxy_url = "" api_key = os.getenv("SERVICE_KEY") # Can be directly replaced with code for calling Azure endpoint as in: #.env config example : # AZURE_OPENAI_API_BASE=YOUR_API_BASE # AZURE_OPENAI_DEPLOYMENT=YOUR_DEPLOYMENT # AZURE_OPENAI_API_VERSION=YOUR_API_VERSION # AZURE_OPENAI_MODEL=gpt-4o-mini # AZURE_OPENAI_API_KEY={{YOUR_API_KEY}} # AZURE_OPENAI_ENDPOINT=${AZURE_OPENAI_API_BASE}/openai/deployments/${AZURE_OPENAI_DEPLOYMENT}/chat/completions?api-version=${AZURE_OPENAI_API_VERSION} # Load environment variables # load_dotenv() # api_key = os.getenv('AZURE_OPENAI_API_KEY') # openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT') # #logger.info("Openai endpoint: %s", openai_endpoint) # headers = { # "Content-Type": "application/json", # "api-key": api_key # } # response = requests.post( # openai_endpoint, # headers=headers, # json=payload # ) headers = { "Content-Type": "application/json", "X-API-KEY": api_key } retries = 3 for attempt in range(retries): response = requests.post(proxy_url, headers=headers, json=payload) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] return None