# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors # # SPDX-License-Identifier: Apache-2.0 # Patterns of agent orchestrations # Uses the group chat or the agents' handoffs to create a pattern from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Callable, Optional, Tuple, Union from ..context_variables import ContextVariables from ..group_utils import ( create_group_manager, create_group_transition, link_agents_to_group_manager, prepare_group_agents, process_initial_messages, setup_context_variables, ) from ..targets.transition_target import TerminateTarget, TransitionTarget if TYPE_CHECKING: from ...agent import Agent from ...conversable_agent import ConversableAgent from ...groupchat import GroupChat, GroupChatManager from ..group_tool_executor import GroupToolExecutor class Pattern(ABC): """Base abstract class for all orchestration patterns. Patterns provide a reusable way to define how agents interact within a group chat. Each pattern encapsulates the logic for setting up agents, configuring handoffs, and determining the flow of conversation. This is an abstract base class and should not be instantiated directly. Use one of the concrete pattern implementations like AutoPattern, RoundRobinPattern, RandomPattern, or ManualPattern. """ def __init__( self, initial_agent: "ConversableAgent", agents: list["ConversableAgent"], user_agent: Optional["ConversableAgent"] = None, group_manager_args: Optional[dict[str, Any]] = None, context_variables: Optional[ContextVariables] = None, group_after_work: Optional[TransitionTarget] = None, exclude_transit_message: bool = True, summary_method: Optional[Union[str, Callable[..., Any]]] = "last_msg", ): """Initialize the pattern with the required components. Args: initial_agent: The first agent to speak in the group chat. agents: List of all agents participating in the chat. user_agent: Optional user proxy agent. group_manager_args: Optional arguments for the GroupChatManager. context_variables: Initial context variables for the chat. group_after_work: Default after work transition behavior when no specific next agent is determined. exclude_transit_message: Whether to exclude transit messages from the conversation. summary_method: Method for summarizing the conversation. """ self.initial_agent = initial_agent self.agents = agents self.user_agent = user_agent self.group_manager_args = group_manager_args or {} self.context_variables = context_variables or ContextVariables() self.group_after_work = group_after_work if group_after_work is not None else TerminateTarget() self.exclude_transit_message = exclude_transit_message self.summary_method = summary_method @abstractmethod def prepare_group_chat( self, max_rounds: int, messages: Union[list[dict[str, Any]], str], ) -> Tuple[ list["ConversableAgent"], list["ConversableAgent"], Optional["ConversableAgent"], ContextVariables, "ConversableAgent", TransitionTarget, "GroupToolExecutor", "GroupChat", "GroupChatManager", list[dict[str, Any]], "ConversableAgent", list[str], list["Agent"], ]: """Prepare the group chat for orchestration. This is the main method called by initiate_group_chat to set up the pattern. Subclasses must implement or extend this method to define pattern-specific behavior. Args: max_rounds: Maximum number of conversation rounds. messages: Initial message(s) to start the conversation. Returns: Tuple containing: - List of agents involved in the group chat - List of wrapped agents - User agent, if applicable - Context variables for the group chat - Initial agent for the group chat - Group-level after work transition for the group chat - Tool executor for the group chat - GroupChat instance - GroupChatManager instance - Processed messages - Last agent to speak - List of group agent names - List of temporary user agents """ from ...groupchat import GroupChat # Prepare the agents using the existing helper function tool_executor, wrapped_agents = prepare_group_agents( self.agents, self.context_variables, self.exclude_transit_message ) # Process the initial messages BEFORE creating the GroupChat # This will create a temporary user agent if needed processed_messages, last_agent, group_agent_names, temp_user_list = process_initial_messages( messages, self.user_agent, self.agents, wrapped_agents ) # Create transition function (has enclosed state for initial agent) group_transition = create_group_transition( initial_agent=self.initial_agent, tool_execution=tool_executor, group_agent_names=group_agent_names, user_agent=self.user_agent, group_after_work=self.group_after_work, ) # Create the group chat - now we use temp_user_list if no user_agent groupchat = GroupChat( agents=[tool_executor] + self.agents + wrapped_agents + ([self.user_agent] if self.user_agent else temp_user_list), messages=[], max_round=max_rounds, speaker_selection_method=group_transition, ) # Create the group manager manager = create_group_manager(groupchat, self.group_manager_args, self.agents, self.group_after_work) # Point all agent's context variables to this function's context_variables setup_context_variables( tool_execution=tool_executor, agents=self.agents, manager=manager, user_agent=self.user_agent, context_variables=self.context_variables, ) # Link all agents with the GroupChatManager to allow access to the group chat link_agents_to_group_manager(groupchat.agents, manager) return ( self.agents, wrapped_agents, self.user_agent, self.context_variables, self.initial_agent, self.group_after_work, tool_executor, groupchat, manager, processed_messages, last_agent, group_agent_names, temp_user_list, ) # type: ignore[return-value] @classmethod def create_default( cls, initial_agent: "ConversableAgent", agents: list["ConversableAgent"], user_agent: Optional["ConversableAgent"] = None, group_manager_args: Optional[dict[str, Any]] = None, context_variables: Optional[ContextVariables] = None, exclude_transit_message: bool = True, summary_method: Optional[Union[str, Callable[..., Any]]] = "last_msg", ) -> "DefaultPattern": """Create a default pattern with minimal configuration. This replaces the need for a separate BasePattern class by providing a factory method that creates a simple DefaultPattern instance. Args: initial_agent: The first agent to speak in the group chat. agents: List of all agents participating in the chat. user_agent: Optional user proxy agent. group_manager_args: Optional arguments for the GroupChatManager. context_variables: Initial context variables for the chat. exclude_transit_message: Whether to exclude transit messages from the conversation. summary_method: Method for summarizing the conversation. Returns: A DefaultPattern instance with basic configuration. """ return DefaultPattern( initial_agent=initial_agent, agents=agents, user_agent=user_agent, group_manager_args=group_manager_args, context_variables=context_variables, exclude_transit_message=exclude_transit_message, summary_method=summary_method, ) class DefaultPattern(Pattern): """DefaultPattern implements a minimal pattern for simple agent interactions. This replaces the previous BasePattern and provides a concrete implementation of the Pattern abstract base class. """ def prepare_group_chat( self, max_rounds: int, messages: Union[list[dict[str, Any]], str], ) -> Tuple[ list["ConversableAgent"], list["ConversableAgent"], Optional["ConversableAgent"], ContextVariables, "ConversableAgent", TransitionTarget, "GroupToolExecutor", "GroupChat", "GroupChatManager", list[dict[str, Any]], Any, list[str], list[Any], ]: """Prepare the group chat with default configuration. This implementation calls the parent class method but ensures that the group_after_work in the returned tuple is the pattern's own. Args: max_rounds: Maximum number of conversation rounds. messages: Initial message(s) to start the conversation. Returns: Tuple containing all necessary components for the group chat. """ # Use the parent class's implementation to prepare the agents and group chat ( agents, wrapped_agents, user_agent, context_variables, initial_agent, _, # Ignore the group_after_work from parent tool_executor, groupchat, manager, processed_messages, last_agent, group_agent_names, temp_user_list, ) = super().prepare_group_chat( max_rounds=max_rounds, messages=messages, ) # Return all components with our group_after_work return ( agents, wrapped_agents, user_agent, context_variables, initial_agent, self.group_after_work, # Use our own group_after_work tool_executor, groupchat, manager, processed_messages, last_agent, group_agent_names, temp_user_list, )