import logging import os import subprocess from typing import Dict from xml.etree import ElementTree import acoustid import cv2 import imagehash import librosa import numpy as np from PIL import Image from fastdtw import fastdtw from scipy.spatial.distance import cosine from skimage.metrics import structural_similarity as ssim logger = logging.getLogger("desktopenv.metrics.vlc") def is_vlc_playing(actual_status_path: str, rule: Dict[str, str]) -> float: """ Checks if VLC is currently playing a file. """ with open(actual_status_path, 'rb') as file: actual_status = file.read().decode('utf-8') tree = ElementTree.fromstring(actual_status) status = tree.find('state').text if status == 'playing': if rule['type'] == 'file_name': file_info = tree.find('information/category[@name="meta"]/info[@name="filename"]').text if file_info: return 1 if file_info.endswith(rule['file_name']) else 0 elif rule['type'] == 'url': file_info = tree.find('information/category[@name="meta"]/info[@name="url"]').text if file_info: return 1 if file_info.endswith(rule['url']) else 0 else: logger.error(f"Unknown type: {rule['type']}") return 0 else: return 0 # fixme: part of this function can be moved to getters def is_vlc_recordings_folder(actual_config_path: str, rule: Dict[str, str]) -> float: """ Checks if VLC's recording folder is set to the expected value. """ with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_recording_file_path = rule['recording_file_path'] try: for line in config_file.split("\n"): # Skip comments and empty lines if line.startswith('#') or not line.strip(): continue # Check if the line contains the recording path setting if 'input-record-path' in line: # Extract the value of the recording path and remove surrounding whitespace current_path = line.split('=')[-1].strip() # Compare with the Desktop path if current_path == expected_recording_file_path: return 1 else: return 0 # The configuration key was not found in the file return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def is_vlc_fullscreen(actual_window_size, screen_size): if screen_size is None or actual_window_size is None: # if the screen size is not available, means that the window is not fullscreen return 0 if actual_window_size['width'] == screen_size['width'] and actual_window_size['height'] == screen_size['height']: return 1 else: return 0 def compare_images(image1_path, image2_path, **options): # You would call this function with the paths to the two images you want to compare: # score = compare_images('path_to_image1', 'path_to_image2') # print("Similarity score:", score) if not image1_path or not image2_path: return 0 base_score = options.get("reference_base_result", None) # Open the images and convert to grayscale image1 = Image.open(image1_path).convert('L') image2 = Image.open(image2_path).convert('L') # Resize images to the smaller one's size for comparison image1_size = image1.size image2_size = image2.size new_size = min(image1_size, image2_size) image1 = image1.resize(new_size, Image.Resampling.LANCZOS) image2 = image2.resize(new_size, Image.Resampling.LANCZOS) # Convert images to numpy arrays image1_array = np.array(image1) image2_array = np.array(image2) # Calculate SSIM between two images similarity_index = ssim(image1_array, image2_array) epsilon = 0.01 if base_score is None: if similarity_index >= base_score + epsilon: return (similarity_index - base_score) / (1 - base_score) else: return 0 else: return similarity_index def compare_audios(audio_path_1, audio_path_2): """ Compare two audio files and return a similarity score in the range [0, 1]. audio_path_1, audio_path_2: paths to the audio files to compare """ # Example Usage: # similarity = compare_audios_simple('path_to_audio1.mp3', 'path_to_audio2.mp3') # print(f'Similarity Score: {similarity}') # Convert to common format if necessary and load audio if not audio_path_1 or not audio_path_2: return 0 # Load the audio files and extract MFCC features y1, sr1 = librosa.load(audio_path_1) mfcc1 = librosa.feature.mfcc(y=y1, sr=sr1) y2, sr2 = librosa.load(audio_path_2) mfcc2 = librosa.feature.mfcc(y=y2, sr=sr2) # Normalize the MFCC features mfcc1 = librosa.util.normalize(mfcc1, axis=1) mfcc2 = librosa.util.normalize(mfcc2, axis=1) # Define a lambda function to compute cosine distance dist_func = lambda x, y: cosine(x, y) # Use the DTW algorithm to find the best alignment path distance, path = fastdtw(mfcc1.T, mfcc2.T, dist=dist_func) # Calculate the similarity score, here we use 1/(1+distance) to convert distance to a similarity score similarity = 1 / (1 + distance) return similarity def compare_audios_by_dl_model(audio_path_1, audio_path_2): pass def compare_videos(video_path1, video_path2, max_frames_to_check=100, threshold=5): # Open both video files cap1 = cv2.VideoCapture(video_path1) cap2 = cv2.VideoCapture(video_path2) frames_checked = 0 mismatch_count = 0 while frames_checked < max_frames_to_check: # Read frames from both videos ret1, frame1 = cap1.read() ret2, frame2 = cap2.read() # If a video ends, then check if both ended to confirm they are of the same length if not ret1 or not ret2: return ret1 == ret2 # Convert frames to PIL Images frame1 = Image.fromarray(cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB)) frame2 = Image.fromarray(cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)) # Compute the perceptual hash for each frame hash1 = imagehash.phash(frame1) hash2 = imagehash.phash(frame2) # Increment the frames checked frames_checked += 1 # Compute the difference in the hashes if hash1 - hash2 > threshold: mismatch_count += 1 # If there's a significant difference, the frames are not the same if mismatch_count > threshold: return 0. # If we reach here, the content appears to be the same return 1. def are_audio_files_similar(mp3_file_path, mp4_file_path): # Extract audio fingerprint from MP3 file mp3_fingerprint, mp3_duration = acoustid.fingerprint_file(mp3_file_path) # Extract the audio stream from the MP4 file mp4_audio_path = os.path.splitext(mp4_file_path)[0] + '_extracted.mp3' try: subprocess.run(["ffmpeg", "-i", mp4_file_path, "-vn", "-ar", "44100", "-ac", "2", "-ab", "192k", "-f", "mp3", mp4_audio_path], check=True) except subprocess.CalledProcessError as e: print(f"An error occurred during audio extraction from MP4: {e}") return 0. # Extract audio fingerprint from the extracted audio mp4_fingerprint, mp4_duration = acoustid.fingerprint_file(mp4_audio_path) # Clean up temporary extracted audio file os.remove(mp4_audio_path) # Compare fingerprints (rudimentary comparison) if mp3_duration >= mp4_duration and mp3_fingerprint == mp4_fingerprint: return 1. return 0. def check_qt_bgcone(actual_config_path, rule): with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_qt_bgcone = rule['expected_qt_bgcone'] if isinstance(expected_qt_bgcone, int): expected_qt_bgcone = str(expected_qt_bgcone) try: # The default value of qt_bgcone is 1, which means it is enabled qt_bgcone = "1" for line in config_file.split("\n"): # Check if the line contains the recording path setting if 'qt-bgcone=' in line: # Extract the value of the recording path and remove surrounding whitespace qt_bgcone = line.split('=')[-1].strip() # The configuration key was not found in the file if qt_bgcone == expected_qt_bgcone: return 1 else: return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def check_qt_max_volume(actual_config_path, rule): with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_qt_max_volume = rule['expected_qt_max_volume'] if isinstance(expected_qt_max_volume, int): expected_qt_max_volume = str(expected_qt_max_volume) try: qt_max_volume = "125" for line in config_file.split("\n"): if 'qt-max-volume=' in line: qt_max_volume = line.split('=')[-1].strip() # The configuration key was not found in the file if qt_max_volume == expected_qt_max_volume: return 1 else: return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def check_qt_minimal_view(actual_config_path, rule): with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_qt_minimal_view = rule['expected_qt_minimal_view'] if isinstance(expected_qt_minimal_view, int): expected_qt_minimal_view = str(expected_qt_minimal_view) try: qt_minimal_view = "0" for line in config_file.split("\n"): if 'qt-minimal-view=' in line: qt_minimal_view = line.split('=')[-1].strip() if qt_minimal_view == expected_qt_minimal_view: return 1 else: return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def check_qt_slider_colours(actual_config_path, rule): with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') try: qt_slider_colours = "153;210;153;20;210;20;255;199;15;245;39;29" for line in config_file.split("\n"): if 'qt-slider-colours' in line: qt_slider_colours = line.split('=')[-1].strip() # The configuration key was not found in the file if rule['type'] == 'match': expected_qt_slider_colours = rule['expected_qt_slider_colours'] if qt_slider_colours == expected_qt_slider_colours: return 1 else: return 0 elif rule['type'] == 'blackish': def is_color_blackish(rgb_values, threshold=100): # decide if the color is blackish return all(value < threshold for value in rgb_values) def parse_qt_slider_colours(colours_string): # parse the string of colours into a list of RGB tuples values = [int(x) for x in colours_string.split(';')] colors = list(zip(values[0::3], values[1::3], values[2::3])) return colors colors = parse_qt_slider_colours(qt_slider_colours) # check if all colors are blackish for color in colors: if is_color_blackish(color): pass else: return 0 return 1 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def check_global_key_play_pause(actual_config_path, rule): """ # Play/Pause (str) #global-key-play-pause= # Play/Pause (str) #key-play-pause=Space """ with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_global_key_play_pause = rule['expected_global_key_play_pause'] if isinstance(expected_global_key_play_pause, int): expected_global_key_play_pause = str(expected_global_key_play_pause) try: global_key_play_pause = "0" for line in config_file.split("\n"): # Check if the line contains the recording path setting if 'global-key-play-pause=' in line: global_key_play_pause = "0" if line.split('=')[-1].strip() == "" else "1" if global_key_play_pause == expected_global_key_play_pause: return 1 else: return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0 def check_one_instance_when_started_from_file(actual_config_path, rule): with open(actual_config_path, 'rb') as file: config_file = file.read().decode('utf-8') expected_one_instance_when_started_from_file = rule['expected_one_instance_when_started_from_file'] if isinstance(expected_one_instance_when_started_from_file, int): expected_one_instance_when_started_from_file = str(expected_one_instance_when_started_from_file) try: one_instance_when_started_from_file = "1" for line in config_file.split("\n"): # Check if the line contains the recording path setting if 'one-instance-when-started-from-file=' in line: one_instance_when_started_from_file = line.split('=')[-1].strip() if one_instance_when_started_from_file == expected_one_instance_when_started_from_file: return 1 else: return 0 except FileNotFoundError: logger.error("VLC configuration file not found.") return 0 except Exception as e: logger.error(f"An error occurred: {e}") return 0